مقایسه اثر اصلاح با ترکیبات سیلانی مختلف بر ساختار شیمیایی و ویژگی‌های فیزیکی چوب صنوبر

نوع مقاله: مقاله پژوهشی

نویسندگان

1 دانشجوی کارشناسی ارشد گروه مهندسی چوب و کاغذ، دانشکده منابع طبیعی، دانشگاه علوم کشاورزی و منابع طبیعی ساری، ساری، ایران

2 دانشیار گروه مهندسی چوب و کاغذ، دانشکده منابع طبیعی، دانشگاه علوم کشاورزی و منابع طبیعی ساری ، ساری، ایران

3 استادیار گروه مهندسی چوب و کاغذ، دانشکده منابع طبیعی، دانشگاه علوم کشاورزی و منابع طبیعی ساری، ساری، ایران

4 استادیار دانشکده علوم پایه، دانشگاه کردستان، سنندج، ایران

چکیده

این تحقیق با هدف مقایسه اثر تترااتوکسی‌سیلان و وینیل‌تری‌اتوکسی‌سیلان بر ساختار شیمیایی و ویژگی‌های فیزیکی چوب صنوبر انجام شد. نمونه‌های آزمونی به شاهد، اصلاح با ترکیبات سیلانی، سیلان وینیلی/آغازگر بنزوئیل‌پراکساید و تلفیق سیلان/بنزوئیل پراکساید تفکیک شدند. واکنش ماده اصلاح‌کننده به تغییر ساختار شیمیایی، افزایش دانسیته و حجیم‌شدگی انجامید. افزایش وزن در اصلاح
وینیل‌تری‌اتوکسی‌سیلان بیش از تترااتوکسی‌سیلان بود. حضور آغازگر به کاهش معنی‌دار جذب آب و تغییرات ابعاد در اصلاح با ترکیب سیلانی انجامید. در خاتمه آزمون غوطه‌وری-خشک‌کردن، کاهش وزن و ضریب حجیم‌کنندگی در حضور تترااتوکسی‌سیلان بیش از
وینیل‌تری‌اتوکسی‌سیلان بود. کمترین افت وزن و حجیم‌شدگی به ترتیب در نمونه‌های وینیل‌تری‌اتوکسی‌سیلان/ بنزوئیل پراکساید و تلفیقی محاسبه شد. در مرحله اول، جذب آب نمونه‌های اصلاح شده با وینیل‌تری‌اتوکسی‌سیلان بیش از تترااتوکسی‌سیلان بود و از مرحله دوم، این روند معکوس گردید. پلیمریزاسیون ترکیب وینیلی در حضور آغازگر، به کاهش محسوس‌تر جذب آب و واکشیدگی حجمی در آزمون دوره‌ای انجامید.

کلیدواژه‌ها

موضوعات


[1] Ormondroyd, G.A., Spear, M. and Curling, S.F., 2015. Modified wood: review of efficacy and service life testing. Proceedings of the ICE-Construction Materials, (4):187-203.

 [2] Li, Y., Liu, Y., Li, J., lv, D. and Fan, X., 2010. Fabrication of a novel wood- based composite by in-situ polymerization of functional monomers. In measuring technology and mechatronics automation, International conference, (2):208-211.

 [3] Moheby, B., 2003. Modification of wood and lignocellulosic materials and their technology. National Conference of processing and cellulosic materials usage, October. 1-2 Rezvanshahr, Iran, p 205-214. (In Persian).

 [4] Jahantigh, H., Omidvar, A. and Khazaian, A., 2013. Distribution of Polymer in environmentally friendly modified wood. In: The first national conference of protection and planning of environment. Feb. 21, Hamedan, Iran, p 1-6. (In Persian).

[5] Bavaneghi, F., Ghorbani, M. and Kargarfard, A., 2012. Effects of acetylation and press time on heat transfer in particleboardmat from Hornbeam wood (Carpinus betulus). Iranian Journal of Wood and Paper Science Research, 27(3):510-521. (In Persian).

[6] Xie, Y., Qiliang, F. and Wang, Q., 2013. Effects of chemical modification on the mechanical properties of wood. European Journal of Wood and Wood Products, 71:401-416.

[7] Mattos, B., Serrano, L., Gatto, D., Magalhaes, W.L.E. and Labidi, J., 2014. Thermochemical and hygroscopicity properties of pinewood treated by in situ copolymerisation with methacrylate monomers. Thermochimica Acta, 596:70- 78.

[8] Gao, X., Li, Q., Cheng, W., Han, G. and Xuan, L., 2017. High temperature and pressurized steaming/silane coupling co-modification for wood fibers and its effect on the properties of wood fiber/HDPE composites. Macromolecular Research, 25(2):141-150.

[9] Donath, S., Militz, H. and Mai, C., 2006. Creating water-repellent effects on wood by treatment with silanes. Holzforschung, 60(1): 40-46.

[10] Kartal, S.N., Yoshimura, T. and Imamura, Y., 2009. Modification of wood with Si compounds to limit boron leaching from treated wood and to increase termite and decay resistance. International biodeterioration & biodegradation, 63(2):187-190.

[11] Panov, D. and Terziev, N., 2009. Study on some alkoxysilanes used for hydrophobation and protection of wood against decay. International Biodeterioration & Biodegradation, 63(4):456-461.

[12] Woźniak, M., Ratajczak, I., Lis, B. and Krystofiak, T., 2018. Hydrophobic properties of wood traeted with propolis-silane formulations. Wood research, 63(3):517-524.

[13] Sobhani, F., Ghorbani, M. and Amininasab, S.M., 2016. The effects of modification with silane compound on physical properties of poplar wood (Popolus Deltoids). Iranian Journal of Wood and Paper Science Research, 24(1):103-116. (In Persian).

[14] Cappelletto, E., Maggini, S., Girardi, F., Bochicchio, G., Tessadri, B. and Di Maggio, R., 2013. Wood surface protection with different alkoxysilanes: a hydrophobic barrier. Cellulose, 20(6): 3131-3141.

[15] Mai, C.and Militz, H., 2004. Modification of wood with silicon compounds. Inorganic silicon compounds and sol-gel systems: a review. Wood Science and Technology, 37(5): 339-348.

[16] Sèbe, G. and Brook, M.A., 2001. Hydrophobization of wood surfaces: covalent grafting of silicone polymers. Wood Science and Technology, 35(3): 269-282.

[17] Pinto, A.P.F. and Rodrigues, J.D., 2012. Consolidation of carbonate stones: Influence of treatment procedures on the strengthening action of consolidants. Journal of Cultural Heritage, 13(2):  54-166.

[18] Rubio, F., Rubio, J. and Oteo, J.L., 1998. A FT-IR study of the hydrolysis of tetraethylorthosilicate (TEOS). Spectroscopy Letters, 31(1):199-219.

[19] Hill, C.A.S., Mastery Farahani, M.R. and Hale, M.D.C., 2004. The use of organo alkoxysilane coupling agents for wood preservation. Holzforschung, (58):316-325.

[20] Donath, S., Militz, H. and Mai, C., 2004. Wood modification with alkoxysilanes. Wood Science and Technology, 38(7):555-566.

 [21] Nachtigall, S.M., Cerveira, G.S. and Rosa, S.M., 2007. New polymeric-coupling agent for polypropylene/wood-flour composites. Polymer Testing, 26(5):619-628.

[22] Barberena-Fernández, A.M., Carmona-Quiroga, P.M. and Blanco-Varela, M.T., 2015. Interaction of TEOS with cementitious materials: Chemical and physical effects. Cement and Concrete Composites, 55:145-152.

[23] Yildiz, Ü.C., Yildiz, S. and Gezer, E.D., 2005. Mechanical properties and decay resistance of wood-polymer composites prepared from fast growing species in Turkey. Bioresource Technology, 96(9):1003-1011.

[24] Xiaoying, D., Yongfeng, L., Yunlin, F., Jiali, G. and Yixing, L., 2012. Characterization and durability of wood-polymer composite prepared by in-situ polymerization of methyl methacrylate and styrene. Scientific Research and Essays, 7(24): 2143-2149.

[25] Rubio, F., Rubio, J. and Oteo, J.L., 1998. A FT-IR study of the hydrolysis of tetraethylorthosilicate (TEOS). Spectroscopy Letters, 31(1), pp.199-219.

[26] Devi, R. and Maji, T., 2013. In-Situ Polymerized Wood Polymer Composite: effect of additives and nanoclay on the thermal, mechanical properties. Material Research, 16(4): 954-963.

[27] Shang, J., Yan S. and Wang, Q., 2013. Degradation mechanism and chemical component changes in Betulaplatyphylla   wood by wood-rot fungi, BioResources, 8(4):6066-6077.

[28] Ratajczak, I., Rzepecka, E., Woźniak, M., Szentner, K. and Mazela, B., 2015. The effect of alkyd resin on the stability of binding (3-aminopropyl) triethoxysilane with cellulose and wood. Drewno: prace naukowe, doniesienia, komunikaty, 58(195):91-99.

[29] Wozniak, M., Ratajczak, I., Szentner, K., Kwasniewska, P. and Mazela, B., 2015. Propolis and organosilanes in wood protection. Part I: FTIR analysis and biological tests. Annals of Warsaw University of Life Sciences-SGGW. Forestry and Wood Technology, 91:218-224.