بررسی امکان اصلاح خصوصیات فیزیکی و مکانیکی نانوچندسازه های چوب-پلاستیک با پرتو ریزموج

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانش آموخته کارشناسی ارشد صنایع چوب و کاغذ، واحد ساری، دانشگاه آزاد اسلامی، ساری، ایران

2 گروه صنایع چوب و کاغذ، واحد ساری، دانشگاه آزاد اسلامی، ساری، ایران

3 دانشگاه آزاد اسلامی واحد چالوس

4 دانش آموخته دکتری مهندسی صنایع، واحد نور، دانشگاه آزاد اسلامی، نور، ایران

10.22034/ijwp.2022.700820

چکیده

هدف از این تحقیق بررسی اثر تیمار حرارتی ریزموج بر روی خصوصیات فیزیکی و مکانیکی چندسازه‌های ساخته‌شده از آرد چوب، نانو‌سیلیس و پلی‌اتیلن‌سنگین می‌باشد. بدین‌منظور نانو‌سیلس در چهار سطح 0، 1، 2 و 3 درصد مورد استفاده قرار گرفت. ابتدا مواد در اکسترودر دومارپیچه با هم مخلوط و پس از آسیاب توسط دستگاه قالب‌گیری تزریقی به نمونه‌های چوب-پلاستیک تبدیل شدند. همچنین جهت اصلاح خصوصیات چندسازه‌ها از پرتو ریزموج استاندارد با قدرت 900 وات استفاده شد. نمونه‌ها پس از اعمال پرتو ریزموج تحت آزمون‌های فیزیکی و مکانیکی قرار گرفتند. نتایج نشان داد که با افزایش نانوسیلیس تا 3 درصد، مدول و مقاومت خمشی افزایش و مقاومت به ضربه، جذب آب و واکشیدگی ضخامت نمونه‌ها کاهش یافت. نتایج کلی حاکی از اثر مثبت پرتو ریزموج در بهبود چسبندگی در منطقه بین‌فازی و افزایش مدول و مقاومت خمشی و کاهش جذب آب نمونه‌ها بود. همچنین مقاومت به ضربه نمونه‌ها با اعمال تیمار ریزموج کاهش یافت. این نتایج توسط تصاویر میکروسکوپ الکترونی نیز مورد تأیید قرار گرفت.

کلیدواژه‌ها


[1] Haider, A. and Eder, A., 2010. Markets, applications, and processes for wood polymer composites (WPC) in Europe. Processing technologies for the forest and biobased product industries, 146-151.
[2] Eichhorn, S.J., Baillie, C.A., Zafeiropoulos, N., 2001. Current international research into cellulosic fibers and composites. Journal of Materials Science, 36(9): 2107-2131.
[3] Galgali, G., Agarwal, S. and Lele, A., 2004. Effect of clay orientation on the tensile modulus of polypropylene–nanoclay composites. Polymer, 45(17):6059-6069.
[4] Emampour, M., Khademieslam, H., Faezipour, M.M. and Talaeipoor, M., 2021. The investigation of surface properties of Populus nigra wood coated with silica nanoparticles. Iranian Journal of Wood and Paper Industries, 12(1):133-143 (In Persian).
[5] Ismaeilimoghadm, S., Najafi, A., Shahraki, A. and Malekian, B., 2016. Long--term water absorption and thickness swelling and determination of their characteristics in wood flour//polypropylene//Nano SiiO2 nanocomposite. Iranian Journal of Wood and Paper Industries, 7(2):241-254.
[6] Nourbakhsh, A., Baghlani, F.F., and Ashori, A., 2011. Nano-SiO2 filled rice husk/polypropylene composites: Physico-mechanical properties. Industrial Crops and Products, 33(1):183-187.
[7] Lin, Q., Yang, G., Liu, J. and Rao, J., 2006. Property of nano-SiO2/urea formaldehyde resin. Frontiers of Forestry in China, 1(2):230-237.
[8] Farsi, M., 2017. Effect of nano-SiO2 and bark flour content on the physical and mechanical properties of wood–plastic composites. Journal of Polymers and the Environment, 25(2):308-14.
[9] Zou, H., Wu, S. and Shen, J., 2008. Polymer/silica nanocomposites: preparation, characterization, properties, and applications. Chemical reviews, 108(9):3893-3957.
[10] J. Shi, J., Li, J., Zhou, W. and Zhang, D., 2007. Improvement of wood properties by urea-formaldehyde resin and nano-SiO2. Frontiers of Forestry in China, 2(1):104-109.
[11] Naik, T.P., Singh, I. and Sharma, A.K., 2022. Processing of polymer matrix composites using microwave energy: A review. Composites Part A: Applied Science and Manufacturing, 156:106855-106870.
[12] Nuhiji, B., Bower, M.P., Swait, T., Phadnis, V., Day, R.J. and Scaife, R.J., 2021. Simulation of carbon fibre composites in an industrial microwave. Materials Today: Proceedings, 34:82-92.
[13] Sgriccia, N. and Hawley, M.C., 2007. Thermal, morphological, and electrical characterization of microwave processed natural fiber composites. Composites Science and Technology, 67(9):1986-1991.
[14] Farajallahpour, M., Layeghi, M., Dosthosseini, K. and Edalat, H., 2017. The effect of layer’s moisture content and pre-heating by microwave radiation on physical and mechanical properties of laminated veneer lumber. Iranian Journal of Wood and Paper Industries, 8(1):39-51.
[15] Papargyris, D.A., Day, R.J., Nesbitt, A. and Bakavos, D., 2008. Comparison of the mechanical and physical properties of a carbon fibre epoxy composite manufactured by resin transfer moulding using conventional and microwave heating. Composites Science and Technology, 68(7-8):1854-1861.
[16] Kravchenko, O.G., Solouki Bonab, V. and Manas‐Zloczower, I., 2019. Spray‐Assisted Microwave Welding of Thermoplastics Using Carbon Nanostructures with Enabled Health Monitoring. Polymer Engineering & Science, 59(11):2247-2254.
[17] Zhang, Y., Cui, Y., Wang, S., Zhao, X., Wang, F. and Wu, G., 2020. Effect of microwave treatment on bending properties of carbon nanotube/wood plastic composites by selective laser sintering. Materials Letters, 267:127547-127551.
[18] Yuan, J.M., Fan, Z.F., Yang, Q.C., Li, W. and Wu, Z.J., 2018. Surface modification of carbon fibers by microwave etching for epoxy resin composite. Composites Science and Technology, 164:222-228.
[19] Chavooshi, A., Madhoushi, M., Saei, A.M. and Shakeri, A., 2012. Effect of Nanoclay and Microwave Thermal Treatment on Mechanical Properties of MDF Dust-PP Nanocomposite. Science and Technology, 25(4):323-331 (In Persian).
[20] Zlobina, I.V., Bekrenev, N.V., Teterin, D.P. and Slonov, V.N., 2018. Studying the reinforcing microwave modification of aeronautical-purpose structural components made of composite materials. In 1st international conference on mechanical and materials science engineering. 5–6 July Maharashtra, India, p 040108-040113.
[21] Sahin, H. and Ay, N., 2004. Dielectric properties of hardwood species at microwave frequencies. Journal of Wood Science, 50(4):375-80.
[22] Espert, A., Vilaplana, F. and Karlsson, S., 2004. Comparison of water absorption in natural cellulosic fibres from wood and one-year crops in polypropylene composites and its influence on their mechanical properties. Composites Part A: Applied science and manufacturing, 35(11):1267-1276.
[23] Ismaeilimoghadam, S., Shamsian, M., Kashkoli, A.B. and Kord, B., 2015. Effect of chemical modification of wood flour on properties of polypropylene-nano SiO2 hybrid nanocomposite. Iranian Journal of Wood and Paper Science Research, 30(4):674-689 (In Persian).
 [24] Agrawal, R.K. and Drzal, L.T., 1989. Effects of microwave processing on fiber-matrix adhesion in composites. The Journal of Adhesion, 29(1-4):63-79.
[25] Hook, K.J., Agrawal, R.K. and Drzal, L.T., 1990. Effects of microwave processing on fiber-matrix adhesion. II. Enhanced chemical bonding of epoxy to carbon fibers. The Journal of Adhesion, 32(2-3):157-170.
[26] Hosseini, S.B., Hedjazi, S., Jamalirad, L. and Sukhtesaraie, A., 2014. Effect of nano-SiO2 on physical and mechanical properties of fiber reinforced composites (FRCs). Journal of the Indian Academy of Wood Science, 11(2):116-21.