مروری بر خواص نانوفیلترهای حاصل از نانوالیاف سلولزی برای جذب آلاینده‌های هوا

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشگاه تهران

2 چوب و کاغذ، دانشکده منابع طبیعی. دانشگاه تهران

3 دانشکده منابع طبیعی دانشگاه تهران

4 سازمان پژوهشهای علمی و صنعتی ایران

چکیده

آلودگی ناشی از ذرات معلق موجود در هوا یکی از مهم­ترین عوامل تهدیدکننده سلامت انسان و محیط زیست در جهان می­باشد. امروزه، در ساخت فیلترهای صنعتی هوا از پلیمرهای سنتزی بر پایه نفت و مواد شیمیایی استفاده می­شود که به­دلیل ایجاد آلودگی ثانویه، سازگار با محیط زیست نمی­باشند. لذا، توسعه استفاده از یک ماده جدید در ساخت فیلترهای هوا که نه تنها سازگار با محیط زیست باشد بلکه قابلیت تجدیدپذیری را نیز داشته باشد، نیاز حیاتی می­باشد. در سال‌های اخیر تحقیقات و مطالعات زیادی به منظور جایگزین‌ نمودن نانوالیاف سلولزی به جای الیاف مصنوعی مانند نانوالیاف شیشه، کربن فعال و پلیمرهای پلاستیکی در ساخت فیلترهای هوا انجام شده­است.  نانوالیاف سلولزی با داشتن مزایای زیادی از قبیل زیست تخریب‌پذیری، ارزانی ، دانسیته کم و تشکیل ساختار شبکه­ای می­توانند با نانوالیاف مصنوعی رقابت کنند.  تحقیق مروری حاضر با هدف بررسی استفاده از نانوالیاف سلولزی برای جذب ذرات معلق و دی­اکسیدکربن هوا انجام گرفته­است.  بر اساس تحقیقات منتشر شده، گروه­های فعال هیدروکسیل در سطح و همچنین سطح ویژه زیاد نانوالیاف سلولز منجر به افزایش راندمان جذب دی­اکسیدکربن و ذرات معلق هوا می­شود.  همچنین، نانوفیلترهای حاصل از نانوالیاف سلولز به دلیل قطر منافذ کم، دارای افت فشار کمتری نسبت به فیلترهای موجود در بازار می­باشند.

کلیدواژه‌ها

موضوعات


[1] Fang, M., Chan, C. K., and Yao, X., 2009. Managing air quality in a rapidly developing nation: China. Atmospheric Environment, 43(1), 79-86.
[2] Zhang, R., Jing, J., Tao, J., Hsu, S. C., Wang, G., Cao, J., ... and Shen, Z., 2013. Chemical characterization and source apportionment of PM2.5 in Beijing: seasonal perspective. Atmospheric Chemistry and Physics, 13(14), 7053-7074.
[3] Andreae, M. O., & Rosenfeld, D., 2008. Aerosol–cloud–precipitation interactions. Part 1. The nature and sources of cloud-active aerosols. Earth-Science Reviews, 89(1-2), 13-41.
[4] Horton, D. E., Skinner, C. B., Singh, D., and Diffenbaugh, N. S., 2014. Occurrence and persistence of future atmospheric stagnation events. Nature climate change, 4(8), 698.
[5] Hailin, W., Zhuang, Y., Ying, W., Yele, S. U. N., Hui, Y. U. A. N., Zhuang, G., and Zhengping, H. A. O., 2008. Long-term monitoring and source apportionment of PM2. 5/PM10 in Beijing, China. Journal of Environmental Sciences, 20(11), 1323-1327.
[6] Peterson, G., Rapaka, S., Koski, N., Kearney, M., Ortblad, K., and Tadlock, L., 2017. A robust sebum, oil, and particulate pollution model for assessing cleansing efficacy of human skin. International journal of cosmetic science, 39(3), 351-354.
[7] Hu, A., and Apblett, A. (Eds.)., 2014. Nanotechnology for water treatment and purification. Switzerland: Springer International Publishing.
[8] Fuller, G. W., 1933. Progress in water purification. Journal (American Water Works Association), 25(11), 1566-1576.
[9] Rushton, A., Ward, A. S., and Holdich, R. G., 2008. Solid-liquid filtration and separation technology. John Wiley & Sons.
[10] Pendergast, M. M., and Hoek, E. M., 2011. A review of water treatment membrane nanotechnologies. Energy & Environmental Science, 4(6), 1946-1971.
[11] Sagle, A., and Freeman, B., 2004. Fundamentals of membranes for water treatment. The future of desalination in Texas, 2(363), 137.
[12] Pabby, A. K., Rizvi, S. S., and Requena, A. M. S., 2008. Handbook of membrane separations: chemical, pharmaceutical, food, and biotechnological applications. CRC press.
[13] Zhang, R., Liu, C., Hsu, P. C., Zhang, C., Liu, N., Zhang, J., ... and Cui, Y., 2016. Nanofiber air filters with high-temperature stability for efficient PM2. 5 removal from the pollution sources. Nano letters, 16(6), 3642-3649.
[14] Alghoraibi, I., and Alomari, S., 2018. Different methods for nanofiber design and fabrication. Handbook of nanofibers, 1-46.
 
[15] Niu, H., Wang, X.,  and Lin, T., 2012. Upward needleless electrospinning of nanofibers. J. Eng. Fibers Fabr., 7, 17–22.
[16] Dong, Y., Wang, M., Chen, L. and Li, M., 2012. Preparation, characterization of (PVDF HFP)/[bmim]BF4 ionic liquids hybrid membranes and their pervaporation performance for ethyl acetate recovery from water. Desalination, 295: 53–60.
[17] Ding, J., Zhang, M., Jiang, Z., Li, Y., Ma, J. and Zhao, J. 2012. Enhancing the permselectivity of pervaporation membrane by constructing the active layer through alternative self-assembly and spin-coating. Membrane Science, 390: 218–225
[18] Chen, G., Ushida, T. and Tateishi, T., 2002. Scaffold design for tissue engineering. Macromolecular Bioscience, 2:67-77.
[19] Schubert, D. W., and Dunkel, T., 2003. Spin coating from a molecular point of view: its concentration regimes, influence of molar mass and distribution. Materials Research Innovations, 7(5), 314-321.
[20] Kowalewski, T.A., Blonski, S., Barral, S., “Experiments and Modeling of Electrospinning Process”, Bull Polymer Academy Science, 53/4, 385- 394, 2005.
[21] Deitzel, J.M., Kleinmeyer, J., Harris, D., “The Effect of Processing Variables on the Morphology of Electrospun Nanofibers and Textiles”, Polymer, 42, 261-272, 2001.
[22] Sonseca, A., Peponi, L., Sahuquillo, O., “Electrospinning of Biodegradable Polylactide/Hydroxyapatite Nanofibers: Study on the Morphology, Crystallinity Structure and Thermal Stability”, Polymer Degradation and Stability, 97, 2052-2059, 2011.
[23] Sepahvand, S., Jonoobi, M. and Ashori, A., 2019. Chemical modification of cellulose nanofibers with phthalimide air filter to adsorb carbon dioxide. Wood and paper science research, 33(4): 531-543. (In Persian).
[24] Sepahvand, S., Jonoobi, M., Ashori, A., Gauvin, F., Brouwers, H.J.H., and Yu, Q., 2019. Surface modification of cellulose nanofiber aerogels using phthalimide. Polymer Composites. 41, 219–226.
[25] Salleh,W.N.W., Ismail, A.F., Matsuura,T. Abdullah, M.S., 2011. Precursor selection and process conditions in the preparation of carbon membrane for gas separation: A review, Separation & Purification Reviews, 40, 261-311.
[26]-Baker, R. W., 2012. Membrane technology and applications. John Wiley & Sons.
[27] Liu, C., Hsu, P. C., Lee, H. W., Ye, M., Zheng, G., Liu, N., Li, W., and Cui, Y. 2015. Transparent air filter for high-efficiency PM2.5 capture. Nature communications, 6(1), 1-9.
[28] Souzandeh, H., Molki, B., Zheng, M., Beyenal, H., Scudiero, L., Wang, Y., and Zhong, W. H., 2017. Cross-linked protein nanofilter with antibacterial properties for multifunctional air filtration. ACS applied materials & interfaces, 9(27), 22846-22855.
[29] Souzandeh, H., Johnson, K. S., Wang, Y., Bhamidipaty, K., and Zhong, W. H., 2016. Soy-protein-based nanofabrics for highly efficient and multifunctional air filtration. ACS applied materials & interfaces, 8(31), 20023-20031.
[30] Liu, X., Souzandeh, H., Zheng, Y., Xie, Y., Zhong, W. H., and Wang, C., 2017. Soy protein isolate/bacterial cellulose composite membranes for high efficiency particulate air filtration. Composites Science and Technology, 138, 124-133.
[31] Leung, D. Y., Caramanna, G. and Maroto-Valer, M. M., 2014. An overview of current status of carbon dioxide capture and storage technologies. Renewable and Sustainable Energy Reviews, 39: 426-443.
[32] Knöfel, C., Martin, C., Hornebecq, V. and Llewellyn, P. L., 2009. Study of carbon dioxide adsorption on mesoporous aminopropylsilane-functionalized silica and titania combining microcalorimetry and in situ infrared spectroscopy. The Journal of Physical Chemistry C, 113(52): 21726-21734.
[33] Ansaloni, L., Salas-Gay, J., Ligi, S. and Baschetti, M. G., 2017. Nanocellulose-based membranes for CO2 capture. Membrane Science, 522, 216-225.
[34] Darunte, L.A., Walton, K.S., Sholl, D.S. and Jones, C.W., 2016. CO2 capture via adsortion in amine-functionalized sorbents. Chemical Engineering, 12: 82-90.
[35] Dassanayake, R. S., Gunathilake, C., Dassanayake, A. C., Abidi, N., & Jaroniec, M., 2017. Amidoxime-functionalized nanocrystalline cellulose–mesoporous silica composites for carbon dioxide sorption at ambient and elevated temperatures. Journal of Materials Chemistry A, 5(16), 7462-7473.
[36] Hornbostel, M. D., Bao, J., Krishnan, G., Nagar, A., Jayaweera, I., Kobayashi, T., …. and Dubois, L., 2013. Characteristics of an advanced carbon sorbent for CO2 capture. Carbon, 56: 77-85.
[37] Daneleviciute, A., Katunskis, J. and Buika, G., 2009. Electrospun PVA Nanofibres for Gas Filtration Applications. Fibers & Textiles in Eastern Europe, 6(77): 40–43.
[38] Choi, S., Drese, J. H., Eisenberger, P. M., and Jones, C. W., 2011. Application of amine-tethered solid sorbents for direct CO2 capture from the ambient air. Environmental science & technology, 45(6): 2420-2427.
[39] Sung, S. and Suh, M. P., 2014. Highly efficient carbon dioxide capture with a porous organic polymer impregnated with polyethylenimine. Materials Chemistry A, 2(33), 13245-13249.
[40] Mahfoudhi, N. and Boufi, S., 2017. Nanocellulose as a novel nanostructured adsorbent for environmental remediation: a review. Cellulose, 24(3), 1171-1197.
[41] Svagan, A. J., Azizi Samir, M. A., and Berglund, L. A., 2007. Biomimetic polysaccharide nanocomposites of high cellulose content and high toughness. Biomacromolecules, 8(8), 2556-2563.
[42] Faruk, O., Bledzki, A. K., Fink, H. P., and Sain, M., 2012. Biocomposites reinforced with natural fibers: 2000–2010. Progress in polymer science, 37(11), 1552-1596.
[43] Jonoobi, M., Mathew, A. P., Abdi, M. M., Makinejad, M. D., and Oksman, K., 2012. A comparison of modified and unmodified cellulose nanofiber reinforced polylactic acid (PLA) prepared by twin screw extrusion. Journal of Polymers and the Environment, 20(4), 991-997.
[44] Bhat, G., Hegde, R. R., Kamath, M. G., and Deshpande, B., 2008. Nanoclay reinforced fibers and nonwovens. Journal of Engineered Fibers and Fabrics, 3(3), 155892500800300303.
[45] Kaboorani, A., and Riedl, B. 2015. Surface modification of cellulose nanocrystals (CNC) by a cationic surfactant. Industrial Crops and Products, 65, 45-55.
 [46] Yousefi, H., 2010. Cellulose nanofiber (CNF) for nanocomposites production: Opportunities and challenges. In Proceeding of the Sixth International Workshop on Green Composites, Sep. 8-10, Gumi, Korea, 2010 (pp. 151-154).
[47] Miyamoto, T., Takahashi, S.I., Ito, H., Inagaki, H., and Noishiki, Y., 1989. Tissue biocompatibility of cellulose and its derivatives. Biomedical Materials Research, 23:125-133.
[48] Valdebenito, F., García, R., Cruces, K., Ciudad, G., Chinga-Carrasco, G. and Habibi, Y., 2018. CO2 Adsorption of surface-modified cellulose nanofibril films derived from agricultural wastes. ACS Sustainable Chemistry & Engineering, 6(10): 12603-12612.
[49] Saljoughi, E., Sadrzadeh, M. and Mohammadi, T., 2009. Effect of preparation variables on morphology and pure water permeation flux through asymmetric cellulose acetate membranes. Membrane Science, 326(2): 627–634.
[50] Daneleviciute-Vaisnienee, A., Katunskis, J., and Buika, G., 2009. Electrospun PVA nanofibres for gas filtration applications. Fibres & Textiles In Eastern Europe, (6 (77)), 40-43.
[51] Lavoine, N., Desloges, I., Dufresne, A., and Bras, J., 2012. Microfibrillated cellulose–Its barrier properties and applications in cellulosic materials: A review. Carbohydrate polymers, 90(2), 735-764.
[52] Lim, S. K., Lee, S. K., Hwang, S. H., and Kim, H., 2006. Photocatalytic deposition of silver nanoparticles onto organic/inorganic composite nanofibers. Macromolecular Materials and Engineering, 291(10), 1265-1270.
 
[53] Sivakumar, M., Mohan, D. R., and Rangarajan, R., 2006. Studies on cellulose acetate-polysulfone ultrafiltration membranes: II. Effect of additive concentration. Journal of Membrane Science, 268(2), 208-219.
 
[54]-Liu, P., Sehaqui, H., Tingaut, P., Wichser, A., Oksman, K., and Mathew, A. P., 2014. Cellulose and chitin nanomaterials for capturing silver ions (Ag+) from water via surface adsorption. Cellulose, 21(1), 449-461.
[55] Khalil, H. A., Bhat, A. H., and Yusra, A. I., 2012. Green composites from sustainable cellulose nanofibrils: A review. Carbohydrate polymers, 87(2), 963-979.
[56] Cherian, B. M., Leão, A. L., de Souza, S. F., Costa, L. M. M., de Olyveira, G. M., Kottaisamy, M., ... and Thomas, S., 2011. Cellulose nanocomposites with nanofibres isolated from pineapple leaf fibers for medical applications. Carbohydrate Polymers, 86(4), 1790-1798.
[57] Dobreva, T., Benavente, R., Perena, J. M., Perez, E., Avella, M., Garcia, M., and Bogoeva‐Gaceva, G., 2010. Effect of different thermal treatments on the mechanical performance of poly (L‐lactic acid) based eco‐composites. Journal of applied polymer science, 116(2), 1088-1098.
 
[58] Nair, S. S., Zhu, J. Y., Deng, Y., and Ragauskas, A. J., 2014. Hydrogels prepared from cross-linked nanofibrillated cellulose. ACS Sustainable Chemistry & Engineering, 2(4), 772-780.
 
[59] Rosilo, H., Kontturi, E., Seitsonen, J., Kolehmainen, E., and Ikkala, O., 2013. Transition to reinforced state by percolating domains of intercalated brush-modified cellulose nanocrystals and poly (butadiene) in cross-linked composites based on thiol–ene click chemistry. Biomacromolecules, 14(5), 1547-1554.
 
[60] Cunha, A. G., and Gandini, A., 2010. Turning polysaccharides into hydrophobic materials: a critical review. Part 1. Cellulose. Cellulose, 17(5), 875-889.
 
[61] Espino-Pérez, E., Bras, J., Ducruet, V., Guinault, A., Dufresne, A., and Domenek, S., 2013. Influence of chemical surface modification of cellulose nanowhiskers on thermal, mechanical, and barrier properties of poly (lactide) based bionanocomposites. European Polymer Journal, 49(10), 3144-3154.
 
[62] Semba, T., Ito, A., Kitagawa, K., Nakatani, T., Yano, H., and Sato, A., 2014. Thermoplastic composites of polyamide‐12 reinforced by cellulose nanofibers with cationic surface modification. Journal of Applied Polymer Science, 131(20).
 
[63] Habibi, Y., Chanzy, H., and Vignon, M. R., 2006. TEMPO-mediated surface oxidation of cellulose whiskers. Cellulose, 13(6), 679-687.
 
[64] Pasquini, D., de Morais Teixeira, E., da Silva Curvelo, A. A., Belgacem, M. N., and Dufresne, A., 2008. Surface esterification of cellulose fibres: processing and characterisation of low-density polyethylene/cellulose fibres composites. Composites Science and Technology, 68(1), 193-201.
 
[65] Gousse, C., Chanzy, H., Cerrada, M. L., and Fleury, E., 2004. Surface silylation of cellulose microfibrils: preparation and rheological properties. Polymer, 45(5), 1569-1575.
 
[66] Hemraz, U. D., Boluk, Y., and Sunasee, R., 2013. Amine-decorated nanocrystalline cellulose surfaces: synthesis, characterization, and surface properties. Canadian Journal of Chemistry, 91(10), 974-981.
 
[67] Ashori, A., Babaee, M., Jonoobi, M., and Hamzeh, Y., 2014. Solvent-free acetylation of cellulose nanofibers for improving compatibility and dispersion. Carbohydrate polymers, 102, 369-375.
 
[68] Lam, E., Male, K. B., Chong, J. H., Leung, A. C., and Luong, J. H., 2012. Applications of functionalized and nanoparticle-modified nanocrystalline cellulose. Trends in biotechnology, 30(5), 283-290.
 [69] Gebald, C., Wurzbacher, J. A., Tingaut, P., Zimmermann, T., and Steinfeld, A., 2011. Amine-based nanofibrillated cellulose as adsorbent for CO2 capture from air. Environmental science & technology, 45(20), 9101-9108.
[70] Sehaqui, H., Gálvez, M. E., Becatinni, V., cheng Ng, Y., Steinfeld, A., Zimmermann, T., and Tingaut, P., 2015. Fast and Reversible Direct CO2 Capture from Air onto All-Polymer Nanofibrillated Cellulose-Polyethylenimine Foams. Environmental science & technology, 49(5), 3167-3174.
[71] Sepahvand, S., Jonoobi, M., Ashori, A., Gauvin, F., Brouwers, H.J.H., Oksman, K., and Yu, Q., 2020. A promising process to modify cellulose nanofibers for carbon dioxide (CO2) adsorption. Carbohydrate Polymers, 230, 115571.