بررسی خواص سطحی چوب تبریزی پوشش داده‌شده با نانو ذرات سیلیس

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی دکتری گروه صنایع چوب و کاغذ، دانشکده منابع طبیعی و محیط زیست، دانشگاه آزاد اسلامی، واحد علوم و تحقیقات، تهران، ایران

2 استاد، گروه صنایع چوب و کاغذ، دانشکده منابع طبیعی و محیط زیست، دانشگاه آزاد اسلامی، واحد علوم و تحقیقات، تهران، ایران،

3 استاد بازنشسته و عضو هیئت علمی،گروه صنایع چوب، دانشکده منابع طبیعی،پردیس کشاورزی و منابع طبیعی دانشگاه تهران، ایران.

4 دانشیار و عضو هیئت علمی، گروه صنایع چوب و کاغذ، دانشکده منابع طبیعی و محیط زیست، دانشگاه آزاد اسلامی، واحد علوم و تحقیقات تهران، ایران.

چکیده

این مطالعه به بررسی تأثیر پوشش­دار کردن چوب تبریزی با نانوذرّات سیلیس روی برخی خصوصیات کارکردی آن می­پردازد. چوب تبریزی با نانوذرات سیلیس (3، 5 و 7 درصد) و زایکوسیل با استفاده از روش پوشش دهی لایه نشانی، پوشش داده شد و نتایج حاصل با چوب­های شاهد تبریزی و نراد مقایسه شدند.ویژگی­های ساختاری نمونه­های چوب با استفاده از میکروسکوپ الکترونی روبشی و طیف‌سنج مادون‌قرمز بررسی شدند. خصوصیات عملکردی چوب شامل میزان جذب آب، زاویه تماس و دانسیته بررسی شدند. نتایج نشان داد که پیوندهایی بین زایکوسیل و نانو سیلیس در سطح چوب تشکیل شد. پوشش­دار کردن چوب با نانوذرّات سیلیس در غلظت­های 5% و 7%به همراه زایکوسیل جذب آب را در مقایسه با چوب تبریزی شاهد کاهش داد (P<0.05). چوب­های پوشش­دار شده با نانوسیلیس و زایکوسیل، زاویه تماس بزرگتری و دانسیته­ی بیشتری در مقایسه با چوب شاهد تبریزی نشان دادند (P<0.05).

کلیدواژه‌ها

موضوعات


[1] Petric, M., 2013. Surface modification of wood: A critical review. Reviews on Adhesion Adhesives, 2: 216-247.
[2] Wegner, T.K.E., Skog, P.J., and Michler, C.J., 2012. Uses and desirable properties of wood in the 21st century. Journal of Forestry, 108: 165–173.
[3] Mantanis, G.I., and Papadopoulos, A.N., 2010. The sorption of water vapour of wood treated with a nanotechnology compound, Wood Science and Technology, 44(3): 515-522.
[4] Chang, H., Tu, K., Wang, X., and Liu, J., 2015. Facile preparation of stable superhydrophobic coatings on wood surfaces using silica-polymer nanocomposites. Bioresource. 10: 2585-2596.
[5] Hwang, S.S., Liu, S.P., Hsu, P.P., Yeh, J.M., Chang, K.C., and Lai, Y.Z. 2010. Effect of organoclay on themechanical/thermal properties of microcellular injection molded PBT–claynanocomposites. InternationalJournal of Communication Heat Mass Transfer, 37:1036–43.
[6] Ha, S.R., Rhee, K.Y., Park, S.J., and Lee, J.H., 2010.Temperature effects on the fracture behaviourand tensile properties of silane-treated clay/epoxy nanocomposites. CompositionPart B: Engineering, 41:602–7.
[7] Zainuddin, S., Hosura, M.V., Zhoua, Y., Narteha, A.T., Kumarb, A., and Jeelani, S., 2010. Experimentaland numerical investigations on flexural and thermal properties of nanoclay–epoxy nanocomposites. Materials Science Engineering A, 527:7920–6.
[8] Kiaei, M., Amiri, H., Samariha, A., and Amani, N. 2018. Effect of nanosilica on thermal, flammability, and morphological properties of WF/rPS-based nanocomposites. CERNE, 24:59-66.
[9] Wang, C., Zhang, M., Xu, Y., Wang, S., Liu, F., Ma, M., Zang, D., and GAO, Z., 2014. One-step synthesis of unique silica particles for the fabrication of bionic and stably superhydrophobic coatings on wood surface. Advanced Powder Technology, 25: 530–535.
[10] Wang, X., Chai, Y., and Liu, J., 2013. Formation of highly hydrophobic wood surfaces using silica nanoparticles modified with long-chain alkylsilane. Holzforschung, 67(6): 667–672.
[11] Liu, Z., and Cao, J., 2018. Fabrication of superhydrophobic wood surface with a silica/silicone oil complex emulsion. Wood Research. 63:353-364.
[12] Mylsamy, B., Kumar Palaniappan, K., Subramani, S.P., Kumar, P., and Aruchamy, K., 2019. Impact of nanoclay on mechanical and structuralproperties of treated Cocciniaindicafibre reinforced epoxy composites. Journal of Materials Research Technology. 2019. 10:20-35.
[13] Taghiyari, H.R. 2013. Nano-zycosil in MDF: gas and liquid permeability. European Journal of Wood Production, 71:353–360.
[14] Alimohamadi, A., Asadi, F., Aghdaei, R.T. 2012. Genetic diversity in Populusnigra plantations from west of Iran. Annals Forestry Research, 56(1): 165-178.
[15] Traore, M.,  Kaal, J., andCortizas, A.M., 2018. Differentiation between pine woods according to speciesand growing location using FTIR-ATR. Wood Science and Technology, 52:487–504.
[16] Mhaisagar, Y.S., Joshi, B.N., and Mahajan, A., 2012. Surface texture modification of spin-coated SiO2 xerogel thin films by TMCS silylation. Bulletin Material Science, 35: 151–155.
[17] Ghorbani1, M., Biparva, P.,and Hosseinzadeh, S., 2017.Effect of colloidal silica nanoparticles extracted from agricultural waste on physical, mechanical and antifungal properties of wood polymer composite. European Journal of Wood Production, 10: 43-53.