قابلیت نفوذ نانو ولاستونیت در چوب صنوبر و اثر آن بر مقاومت زیستی و ثبات ابعاد چوب

نوع مقاله : مقاله پژوهشی

نویسندگان

1 استادیار گروه علوم و صنایع چوب و کاغذ، دانشکده منابع طبیعی، دانشگاه تهران، کرج، ایران

2 کارشناس ارشد گروه علوم و صنایع چوب و کاغذ، دانشکده منابع طبیعی، دانشگاه تهران، کرج، ایران

3 استاد گروه علوم و صنایع چوب و کاغذ، دانشکده منابع طبیعی، دانشگاه تهران، کرج، ایران

چکیده

در سال‌های اخیر توجه زیادی به استفاده از نانو فناوری برای بهبود معایب چوب شده است. ولاستونیت به عنوان یک سنگ معدنی معمولاً در تولید پلاستیک، سرامیک و بتن استفاده می شود. تولید نانو ولاستونیت گرایش به استفاده از آن را افزایش داده است. اخیراً تحقیقات زیادی برای بهبود دوام، ثبات ابعاد و احتراق پذیری چوب با استفاده از نانو ولاستونیت در کشور انجام شده است. نتایج جالب توجه به دست آمده باعث شد تا در این تحقیق به طور تکمیلی قابلیت نفوذ نانو ولاستونیت به داخل بافت چوب و اثرگذاری آن در برابر تخریب قارچی و ثبات ابعاد چوب صنوبر بررسی شود. نتایج نشان داد نانو ولاستونیت قابلیت نفوذ به داخل چوب را نداشته و بافت چوب به صوت فیلتر در مقابل آن عمل می‌کند. اگرچه دوام زیستی نمونه‌های تیمار شده با نانو ولاستونیت در برابر قارچ پوسیدگی سفید افزایش یافت اما این تاثیر ماندگار نبوده و پس از آبشویی کوتاه مدت از دست رفت. همچنین تیمار چوب با نانو ولاستونیت اثری بر روی مقادیر جذب آب و واکشیدگی ابعاد چوب نداشت. در مجموع، بر پایه نتایج این تحقیق، نانو ولاستونیت برای صنعت اشباع چوب –در جایی که چوب خام مورد استفاده است- توصیه نمی‌شود.

کلیدواژه‌ها


[1] Freeman, M. H., Shupe, T. F., Vlosky, R. P. and Barnes, H. M., 2003 , Present , and Future of the Wood Preservation Industry. Forest Product Journal, 53(10): 8–15.
[2] Reinprecht, L., 2016. Wood Deterioration, Protection and Maintenance. John Wiley & Sons. New Delhi, India, 339 p.
[3] Singh, T. and Singh, A. P., 2012. A review on natural products as wood protectant. Wood Science Technology. 46(5): 851–870.
[4] Clausen, C. A., 2012. Enhancing Durability of Wood-Based Composites with Nanotechnology. General Technical Report FPL–GTR-218, p 8–12.
[5] Chen, G. C., 2009. Treatment of wood with polysilicic acid derived from sodium silicate for fungal decay protection. Wood and Fiber Science, 41(3): 220–228.
[6] Freeman, M. H., Mcintyre, C. R. and Jackson, D., 2009. A critical and comprehensive review of boron in wood preservation, in Proceedings of the American Wood Protection Assoc.-AWPA, 105:279–294.
[7] Hassana, E. B., El-Giarb, E. M. and Steelea, P., 2016. Evaluation of the antioxidant activities of different bio-oils and their phenolic distilled fractions for wood preservation. International Biodeterioration and Biodegradation 110: 121-128.
[8] Afra, E., Narchin, P., 2017. study of antibacterial effects and physical characters of paper coated with nanoclay and homogenized nanoclay. Iranian journal of wood and paper industries,7(4): 561-572. (In Persian).
[9] Lykidis, C., Bak, M., Mantanis, G. and Nemeth, R., 2016. Biological resistance of pine wood treated with nano-sized zinc oxide and zinc borate against brown-rot fungi. European Journal of Wood and Wood Products, 74 (6): 909–911.
[10] Akhtari, M., Ghorbani Kokandeh, M. and Taghiyari, H. R., 2015. Study on the physical and mechanical properties of paulownia wood impregnated with nanosilver and nanocopper. Wood Science and Technology, 21 (4), 147–160.
[11] Miri, S. M. M., Masteri Farahani, M. R. and Rasouli, D., 2015. The surface properties of poplar (Populus deltoids) wood treated with nano copper oxide. Wood Science and Technology, 22(3): 207–220.
[12] Fufa, S. M. and Hovde, P. J., 2010. Nano-based modifications of wood and their environmental impact : review, in World Conference on Timber Engineering (WCTE) (Ceccott, A., Ed.), Riva del Garda, Italy, pp 24–26.
[13] Harabi, A. and Chehlatt, S., 2013. Preparation process of a highly resistant wollastonite bioceramics using local raw materials. Journal of Thermal Analysis and Calorimetry, 111(1): 203–211.
[14] Meng, M. R. and Dou, Q., 2008. Effect of pimelic acid on the crystallization, morphology and mechanical properties of polypropylene/wollastonite composites. Materials Science and Engineering: A, 492 (1), 177–184.
[15] Miri, M., Beheshti nezhad, H. and Jafari, M., 2014. Experimental investigation on mechanical properties of concrete containing nano wollastonite and modeling with gmdh-type neural networks. Amirkabir Journal of Science & Research, 46(2):143–156. (In Persian).
[16] Haghighi1, A., Karimi, A., Taghiyari, H. R., Hamzeh, Y. and Enayati, A. A., 2014. Study on the potential use of nano-wollastonite to improve the fire resistance and dimensional stability of poplar wood (Populus nigra). Iranian Journal of Wood and Paper Industries, 4(2): 1–10. (In Persian).
[17] Haghighi, A., Taghiyari, H. R. and Karimi, A. N., 2013. Study on fire-retardant properties of nano-wollastonite in fir wood (Abies alba). Iranian Journal of Wood and Paper Science Research. 28(2): 258–265. (In Persian).
[18] Karimi, A., Taghiyari, H. R., Fattahi, A., Karimi, S., Ebrahimi, G. and Tarmian, A., 2013. Effects of wollastonite nanofibers on biological durability of poplar wood (Populus nigra) against Trametes versicolor. BioResources, 8(1): 4134–4141.
[19] Jonoobi, M., Rahamin, H., Rafieyan, F.,2015. Cellulose nanocrystal properties and their applications. Iranian journal of wood and paper industries, 6(1): 167-192. (In Persian).
[20] Haghighi Poshtiri, A., Taghiyari, H. R. and Karimi, A. N., 2014. Fire-retarding properties of nano-wollastonite in solid wood. Philippine agricultural scientist, 97(1): 52–59.
[21] Soltani, A., Hosseinpourpia, R., Adamopoulos, S., Taghiyari, H. R. and Ghaffari, E., 2016. Effects of heat-treatment and nano-wollastonite impregnation on fire properties of solid wood. BioResources, 11(1): 8953–8967.
[22] Rangavar, H. and Alavi Seresht, S. A., 2015. Effect of nano-wollastonite, poly vinyl chloride and high density polyethylene polymers and board structure on fire resistance of particleboard made of pepper stalk and industrial wood. Iranian Journal of Wood and Paper Science Research. 30(3): 503–512. (In Persian).
[23] Taghiyari, H. R., Karimi, A.-N. and Paridah, M. D. T., 2013. Nano-wollastonite in particleboard: physical and mechanical properties. BioResources 8 (1): 5721–5732.
[24] Karimi, S., Taghiyari, H. R., Karimi, A., Tahir, P. M. and Halip, J. A., 2014. Effect of nano-wollastonite on water absorption in particleboard, In: Proceedings of International Research Group on Wood Protection (IRG), IRG/WP 14-40662, May 11-15, Utah, USA.
[25] Taghiyari, H. R., Bari, E., Schmidt, O., Ghanbary, M. A. T., Karimi, A.-N. and Tahir, P. M., 2014. Effects of nanowollastonite on biological resistance of particleboard made from wood chips and chicken feather against Antrodia vaillantii. International Biodeterioration and Biodegradation. 90(1): 93–98.
[26] Hassanpoortichi, A., Bazyar, B., Khademieslam, H., Rangavar, H. and Talaeipour, M., 2015. Effect of nano- wollastonite on microscopic, mechanical and physical properties of cement-wood fibers composite. Iranian Journal of Wood and Paper Science Research. 3(4): 567–577. (In Persian).
[27] Hassanpoortichi, A., Bazyar, B., Khademieslam, H., Rangavar, H. and Talaeipour, M., 2016. The effect of nano-wollastonite on biological, mechanical, physical, and microstructural properties of the composite made of wood-cement fiber. Journal of Fundamental and Applied Sciences, 8(35): 1466–1479.
[28] Rangavar, H., Norbakhsh, A. and Haji hatamlou, S., 2016. The effect of nano-wollastonite on physical and mechanical properties of wood plastic composites made with sunflower stem waste and alder. Iranian Journal of Wood and Paper Science Research. 31 (4): 684-695.
[29] Tazakor Rezaie, V., Najafi, A. and Sinaie, A., 2016. The effect of Nano-wollastonite on bending properties and fire resistance characteristics of wood flour/polypropylene composite. Iranian Journal of Wood and Paper Science Research. 31(3): 362–492.
[30] Taghiyari, H. R., Kalantari, A. and Langroudi, A.-E., 2014. Effects of wollastonite nanofibers on biological resistance of historical paper against Aspergillus niger. Lignocellulose 3(2): 111–118.
[31] Taghiyari, H. R., Mobini, K., Samadi, Y. S., Doosti, Z. and Nouri, P., 2013. Effects of nano-wollastonite on thermal conductivity coefficient of medium-density fiberboard. Journal of Nanomaterials & Molecular Nanotechnology, 2(1): 1–5.
[32] Taghiyari, H. R., Mohammad-Panah, B. and Morrell, J. J., 2016. Effects of wollastonite on the properties of medium-density fiberboard (MDF) made from wood fibers and camel-thorn. Maderas. Ciencia y Tecnologia, 18(181): 157–166.
[33] Taghiyari, H. R., Rangavar, H. and Nouri, P., 2013. Fire-retarding properties of nanowollastonite in MDF. European Journal of Wood and Wood Products, 71(5): 573–581.
[34] Taghiyari, H. R., Ghorbanali, M. and Tahir, P. M. D., 2014. Effects of the improvement in thermal conductivity coefficient by nano-wollastonite on physical and mechanical properties in medium-density fiberboard (MDF). BioResources, 9 (3): 4138–4149.
[35] Taghiyari, H. R. and Nouri, P., 2015. Effects of nano-wollastonite on physical and mechanical properties of medium-density fiberboard. Maderas. Ciencia y Tecnologia, 17 (4): 833–842.
[36] Taghiyari1, H. R., Majidi1, R. and Asghar, J., 2016. Adsorption of nano wollastonite on cellulose surface: effects on physical and mechanical properties of medium- density fiberboard (MDF). CERNE, 22(2): 215–222.
[37] Taghiyari, H. R. and Samadi, Y. S., 2016. Effects of wollastonite nanofibers on fluid flow in medium-density fiberboard. Journal of Forestry Research, 27(1): 209–217.
[38] EN 113., 1996. Wood preservatives—Test method for determining the protective effectiveness against wood destroying basidiomycetes—Determination of the toxic values 3.
[39] ISO 13061-14., 2016. Physical and mechanical properties of wood - Test methods for small clear wood specimens -Part 14: Determination of volumetric shrinkage.
[40] Thevenon, M. F., Tondi, G. and Pizzi, A., 2009. High performance tannin resin-boron wood preservatives for outdoor end-uses. European Journal of Wood and Wood Products, 67(1): 89–93.
[41] Tondi, G., Wieland, S., Lemenager, N., Petutschnigg, A., Pizzi, A. and Thevenon, M.-F., 2012. Efficacy of tannin in fixing boron in wood fungal and termite resistance. BioResources 7(1): 1238–1252.
[42] TAPPI test methods: T 211 om-02., 2002. Ash in wood, pulp, paper and paperboard: combustion at 525°C 5.
[43] Efhamisisi, D., Karimi, A.-N., Pourtahmasi, K., Asadi, F. and Taghiyari, H. R., 2010. The effects of agroforestry practices on vessel properties in. International Association of Wood Anatomists, 31(4): 481–487.
[44] Jansen, S., Choat, B. and Pletsers, A., 2009. Morphological variation of intervessel pit membranes and implications to xylem function in angiosperms. American Journal of Botany, 96(1): 409–419.
[45] Sharma, D., Sharma, S., Kaith, B. S., Rajput, J. and Kaur, M., 2011. Synthesis of ZnO nanoparticles using surfactant free in-air and microwave method. Applied Surface Science, 257(22): 9661–9672.
[46] Zhang, Y. L., Yang, Y., Zhao, J. H., Tan, R. Q., Cui, P. and Song, W. J., 2009. Preparation of ZnO nanoparticles by a surfactant-assisted complex sol-gel method using zinc nitrate. Journal of Sol-Gel Science and Technology, 51(2):198–203.
[47] XP CEN/TS 15083-1., 2006. Durability of wood and wood based products. Determination of solid wood durability against wood destroying fungi Test methods. Part 1: Basidiomycetes.
[48] EN 84., 1997. Wood preservatives—accelerated ageing of treated wood prior to biological testing. Leaching procedure.