بررسی اثر پوشش دهی با شلاک بر ویژگی های آکوستیکی گونه های توت سفید (Morus alba) و گردو (Juglans regia)

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی مقطع کارشناسی ارشد، گروه علوم و صنایع چوب و کاغذ، دانشگاه آزاد اسلامی، واحد علوم و تحقیقات، تهران، ایران

2 استادیار گروه علوم و صنایع چوب و کاغذ، دانشگاه آزاد اسلامی، واحد علوم و تحقیقات، تهران، ایران

3 استاد گروه علوم و صنایع چوب و کاغذ، دانشگاه آزاد اسلامی، واحد کرج، کرج، ایران

چکیده

در این تحقیق به مطالعه ی اثر رنگ آمیزی بر ویژگی های آکوستیکی گونه های توت سفید (Morus alba) و گردو (Juglans regia) با لاک و الکل (شلاک) با روش ارتعاش خمشی اجباری در تیر دو سر آزاد پرداخته شده است. بدین منظور نمونه هایی از هر دو گونه با ابعاد 2×15×140 (طول، عرض، ارتفاع) تهیه شد. نمونه های آزمونی به مدت سه هفته جهت یکسان سازی رطوبت در محیط کلیماتیزه با شرایط 2±20 سانتی گراد و رطوبت نسبی %5±65 قرار گرفتند و پس از آن مرحله اول آزمون ارتعاش اجباری به منظور اندازه گیری خواص اولیه ی نمونه های آزمونی صورت پذیرفت. سپس نمونه های هر گونه توسط لاک و الکل پوشش دهی شدند و پس از یکسازی رطوبت مجددا مورد به منظور بررسی اثر پوشش با لاک و الکل در هر گونه مورد آزمون قرار گرفتند. نتایج حاکی از تغییرات یکسان در جرم ویژه نمونه های هر دو گونه ی توت و گردو در اثر پوشش دهی بود. مدول الاستیسیته، ضریب آکوستیک و کارایی تبدیل آکوستیک هر دو گونه پس از پوشش دهی با کاهش روبه رو شدند که میزان افت در گونه ی توت بیش از گونه ی گردو بود. دلیل این موضوع تغییرات به وجود آمده در فرکانس و جرم ویژه ی نمونه های آزمونی هر دو گونه می باشد که میزان تغییرات فرکانسی در گونه ی توت بیش از گونه ی گردو بود. میرایی ارتعاش در اثر پوشش دهی در هر دو گونه با افزایش روبه رو شد که به دلیل تاثیر الکل در خروج مواد استخراجی و ماهیت و نقش متفاوت این مواد بر مقادیر فاکتور مذکور در گونه ی توت بیش از به گونه ی گردو بود.

کلیدواژه‌ها


منابع[1][2][3]
[1]  Wegst, U. K. G., 2006. Wood for sound. American Journal of Botany, 93(10): 1439-1448.
[2]   Akitsu, H., Norimoto, M., Morook, T. and Rowell, RM., 1993.Effect of humidity on Vibrational properties of chemically modified wood. Wood and fiber science, 25(3): 250-600.
[3]  Aramaki, M., Bailleres, H., Brancheriau, L., Kronland-martinet, R. and Ystad, S., 2007. Sound quality  assessment  of  wood  for  xylophone  bars.  Journal of acoustical society of America, 121(4): 2407-2420.
[4]  Roohnia, M., Kohantorabi, M. and Tajdini, A., 2015. Maple wood extraction for a better acoustical performance. European Journal of Wood and Wood Products. 73:139-142.
[5]  Obataya, E., Ono, T., Norimoto, M. 2000. Vibrational properties of wood along the grain. Journal of Materials Science, 35: 2993-3000.
[6]   Rujinirun, C., Phinyocheep, P., Prachyabrued, W .and Laemsak, N., 2005. Chemical treatment of wood for musical instruments. Part I: Acoustically important properties of wood for the Ranad (Thai traditional xylophone). Wood Science and Technology, 39: 77-85.
[7]   Segolpayegani, A., Brémaud, I., Gril, J., Thevenon, M.F. and Pourtahmasi, K., 2012. Effect of extractions on dynamic mechanical properties of white mulberry (Morus Alba). Journal of Wood Science, ‎‎58 (2):153-162.
[8]   Bremaud, I., Nadine, A, Minato, K., Grill, J. and Bernard Tiabaut, B., 2010. Effect of extractives on vibrational properties of African Padauk (Pterocarpus soyauxii Taub.). Wood Science and Technology, 45(3): 461-472.
[9]   Roohnia, M., Hashemi-dizaji, SF., Brancheriau, L., Tajdini, A. and Manouchehri, N., 2011a. Effect of soaking process in water on the acoustical quality of wood for traditional musical instruments. BioResources, 6(2):2055-2065.
[10]    Khaleghi, R., 1991. Comments Iranian traditional music. Nashr no publishing. Tehran. 448 pp. (In Persian)
[11]    Binesh, T., Brief history of Persian music.1997. University of the Arts. Tehran. 191pp. (In Persian)
[12]    Matsunaga, M., Obataya, E. Minamoto, K. and Nakatsubo, F., 2000. Working mechanism of adsorbed water on the vibrational properties of wood impregnated with extractives of pernambuco (Guilandina echinata Spreng.). Journal of Wood Science, 46: 122–129.
[13]    Brancheriau, L, Bailleres, H., Detienne, P., Kronland, R. and Metzger, B., ‎‎2006. Classifiying Xylophone bar materials by perceptual signal processing and wood anatomy analysis. Annals of Forest Science. 63:73-81.
[14]    Ayarkwa, J. Hirashima, Y. and Sasak, Y., 2000. Predicting Modulus of Rupture of Solid and Finger-Jointed Tropical African HardWoods Using Longitudinal Vibration. Forest Products Journal, 51(1): 85-92.
[15]    Alberktas, D. and Vobolis, J., 2004. Modeling and Study of Glued Panel. Materials Science (Medziagotyra), ‎‎10 (4): 370-373.
[16]    Obataya E. and Norimoto, M., 1995. Acoustic properties of cane (Arundo donax L.) used for reeds of woodwind instruments. I. The relationships between vibrational properties and moisture contents of cane (in Japanese). Mokuzai Gakkaishi, 41:289-292.
[17]    Ebrahimi, G. 2015.  Mechanics of Wood and Wood Composite, 5th Ed., Tehran University Publication, Tehran, 712 p. (In Persian)
[18]    Roohnia, M., Kohantorabi, M., Jahan Latibari, A., Tajdini, M. and Ghaznavi, M., 2012. Nondestructive assessment of glued joints in timbers applying vibration-based methods. European Journal of Wood and Wood Products, 70: 791-799
[19]    Roohnia, M. Doosthosseini, K. Kademieslam, H. Gril, J. Bremaud, I., 2006, Study on Variations of Specific Modulus of Elasticity and Shear Moduli in Arizona Cypress Wood, using Vibration Method, Iranian Journal of Natural Resources, 59(4): 921-933. (In Persian)
[20]    Standard test method for evaluating Dynamic Young's Modulus, Shear Modulus, and Passion’s Ratio of Refractory Materials by Impulse Excitation of Vibration. Annual Book of ASTM Standards, C1548 2002
[21]    Roohnia, M., Tajdini, A.and Manouchehri, N., 2011b. Assessing wood in sounding boards considering the ratio of acoustical anisotropy. NDT&E International. 44: 13-20.
[22]    Kohantorabi, M., Hossein, M.A, Shahverdi, M. and Roohnia, M., 2015. Vibration Based NDT Methods to Verify Wood Drying Efficiency.  Drvna Industrija, 66 (3): 221-228.
[23]    Harris, Ciryl M., 1998, Shock and vibration handbook (6th Edition), 2009. McGraw-Hill, New York. 1168 pp.
[24]    Brancheriau, L., 2011. Corrections for Poisson effect in longitudinal vibrations and shearing deformations in transverse vibrations applied to a prismatic orthotropic body. 205-223.Edi: Galloway, A., Mechanical Vibrations: Types, Testing and Analysis, Nova Science Publishers. 412pp.
[25]    Minato, K., Konaka, Y., Bremaud, I., Suzuki, S. and Obataya, E., 2010. Extractives of muirapiranga (Brosium sp.) and its effect on the vibrational properties of wood. Journal of Wood Science, 56: 41-46.
[26]    Ghaznavi, M., Rostamisani, A., Roohnia, M., Jahanlatibari, A. and Yaghmaeipour, A., 2013. Traditional Varnishes and Acoustical Properties of Wooden Soundboards. Science International, 1 (12): 401-407.
[27]    Tsoumis, G., 2006. Chemical Composition and Ultrastructure of Wood. In: Science and Technology of Wood, Tsoumis, G. (Ed.). Van Nostrand Reinhold, New York, pp: 42-46.
[28]    Hashemi, SKH. And Latibari, AJ. 2010. Evaluation and identification of walnut heartwood extractives for protection of poplar wood. BioResources, 6 (1): 59-69.
[29]    De Moura, L.F. and Hernandez, RE., 2005. Evaluation of Varnish (OPV) coating performance for two surfacing methods on sugar maple wood. Wood Fiber Science, 37: 355-366.
[30]    Schleske, M., 1998. On the acoustical properties of violin Varnish (OPV). Catgut Acoustic Society Journal, 3: 27-43.
[31]    Lazzari, M. and Chiantore O., 1999. Drying and oxidative degradation of linseed oil. Polymer Degradation Stability, 65: 303-313.