تاثیر خمیرسازی شیمیایی باگاس و جفت‌کننده روی خواص فیزیکی-مکانیکی چندسازه‌های حاصل از خمیرکاغذ باگاس/ پلی‌اتیلن‌سبک

نوع مقاله : مقاله پژوهشی

نویسندگان

1 کارشناس ارشد گروه صنایع چوب و کاغذ، دانشکده منابع طبیعی، دانشگاه تهران، کرج، ایران

2 دانشیار گروه صنایع چوب و کاغذ، دانشکده منابع طبیعی، دانشگاه تهران، کرج، ایران

3 استادیار گروه صنایع چوب و کاغذ، دانشکده منابع طبیعی، دانشگاه تهران، کرج، ایران

4 استادیار گروه مهندسی علوم و صنایع چوب و کاغذ، دانشکده منابع طبیعی، دانشگاه گنبدکاووس، گنبدکاووس، ایران

چکیده

در این تحقیق تأثیر تقویت‌کنندگی الیاف بکر و الیاف حاصل از خمیرسازی شیمیایی باگاس و به‌کارگیری جفت کننده MAPE بر خواص فیزیکی-مکانیکی چندسازه‌های چوب-پلاستیک بر پایه پلی‌اتیلن سبک موردبررسی قرار گرفت. الیاف باگاس از منطقه تحقیقاتی خوزستان تهیه‌شده و پس از بررسی خواص شیمیایی و آناتومی خمیرهای مختلف شیمیایی شامل خمیرکاغذهای مونواتانول‌آمین (MEA)، سولفیت‌قلیایی-آنتراکینون (AS)، سودا رنگبری نشده (UNS) و رنگبری‌شده (BS) از آن تهیه گردید. سپس چندسازه‌ها با مقدار 30% وزنی الیاف به‌وسیله اکسترودر دومارپیچ و قالب‌گیری پرسی ساخته شدند. ویژگی‌های فیزیکی-مکانیکی این چندسازه‌ها مورد تجزیه‌وتحلیل قرارگرفته و با یکدیگر مقایسه شدند. نتایج نشان داد که در طی خمیرکاغذسازی شیمیایی بخشی از لیگنین و همی‌سلولزها حل می‌شود بنابراین قابلیت اتصال و نسبت ابعاد الیاف باگاس بهبود یافته و درنتیجه الیاف خمیرکاغذ باگاس نسبت به الیاف باگاس خام دارای قابلیت تقویت‌کنندگی بهتری هستند. بهترین خواص به‌وسیله الیاف خمیرکاغذ مونو‌اتانول‌آمین و سولفیت قلیایی-آنتراکینون حاصل شد. افزودن 5% وزنی جفت کننده MAPE (مالدئیک‌انیدرید پلی‌اتیلن) به‌طور معنی‌داری مقاومت کششی، مدول کششی، مقاومت به ضربه و واکشیدگی ضخامت را بهبود می‌دهد که باعث انتقال مؤثر تنش از ماتریس به الیاف تقویت‌کننده محکم می‌شود.

کلیدواژه‌ها


[1] Faludi, G., Renner, K., Móczó, J. and Pukánszky, B., 2013. Biocomposite from polylactic acid and lignocellulosic fibers: Structure–property correlations. Carbohydrate Polymers, 92: 1767– 1775.
[2] Faruk, O., Fink, H.P. and, Sain, M., 2012. Biocomposites reinforced with natural fibers: 2000–2010. Progress in Polymer Science, 37: 1552– 1596.
[3] Berzin, F. and Beaugrand, J., 2014. Evolution of lignocellulosic fibre lengths along the screw profile during twin screw compounding with polycaprolactone. Composites: Part A, 59: 30-36.
[4] Hietala, M., Niinimäki, J. and Oksman, K., 2011, The effect of pre-softened wood chips on wood fibre aspect ratio and mechanical properties of wood–polymer composites. Composites: Part A, 42: 2110–2116.
[5] Hietala, M., 2011. Processing of wood chip–plastic composites: effect on wood particle size, microstructure and mechanical properties. Plastics, Rubber and Composites, 40: 49-56.
[6] Kordsachia, O. and Patt, R., 1991. Suitability of different hardwoods and non-wood plants for non-polluting pulp production. Biomass Bioenergy, 1: 225–231.
[7] Islam, M.S. and Foreman, N.J., 2010, Influence of alkali treatment on the interfacial and physico-mechanical properties of industrial hemp fibre reinforced polylactic acid composites. Composites: Part A, 41: 596–603.
[8] Anamaria S., Totolin, M., Cazacu, G. and Vasile, C., 2012. Low density polyethylene composites containing cellulose pulp fibers. Composites: Part B, 43: 1873–1880.
[9] López, S.B., Mansouri, E.I, Mutjé, P. and Vilaseca, F., 2012.  PP composites based on mechanical pulp, deinked newspaper and jute strands: A comparative study. Composites: Part B, 43: 3453–3461.
[10] Hedjazi, S., Kordsachia, O., Patt, R., Latibari, A. and Tschirner, U., 2009. Alkaline sulfite–anthraquinone (AS/AQ) pulping of wheat straw and totally chlorine free (TCF) bleaching of pulps. Industrial crops and products, 29: 27–36.
[11] Georgopoulos, S., Tarantili, P.A, Avgerinos, E., Andreopoulos, A.G. and Koukios, E.G., 2005. Thermoplastic polymers reinforced with fibrous agricultural residues. Polymer Degradation and Stability, 90: 303–312.
[12] Du, Y., Yan, N., Kortschot, M.T. and Farnood, R., 2013. Pulp fiber-reinforced thermoset polymer composites: Effects of the pulp fibers and polymer. Composites: Part B, 48:10–17.
[13] Kubo S., 2005. Hydrogen bonding in lignin: a Fourier transform infrared model compound study. Biomacromolecules, 6(5):2815–2821.
[14] Jonoobi, M., Shakeri, A., Misra, M. and Oksman, K., 2009. Chemical composition, crystallinity, and thermal degradation of bleached and unbleached kenaf bast (Hibiscus cannabinus) pulp and nanofibers. BioResources, 4:626-639.
[15] Bledzki, A. K. and Gaaasn, J., 1999. Composites reinforced with cellulose based fibers. Progress in Polymer Science, 24:221–274.
[16] Islam, M.S. and Foreman, N.J, 2010. Influence of alkali treatment on the interfacial and physico-mechanical properties of industrial hemp fibre reinforced polylactic acid composites. Composites: Part A, 41: 596–603.
[17] Mansouri, N., Espinach, X., Julian, F., Verdaguer, N., Torres, L., Llop, M. and Mutje, P., 2012. Reasearch on the suitability of organosolv semi-chemial triticale fibers as reinforcement for recycled HDPE composites, Bioresources, 7: 5032-5047.
[18] Kargarfard, A., 2011. The Effect of Wood Particles Type and Coupling Agent Content on Properties of Composites From Recyceled Polypropylene and Eucalyptus Wood, Journal of Forest and Wood Products, 64: 55-64. (In persian).
[19] Nourbakhsh, A., Kargarfard, A., Golbabaei, F. and Kouhpayehzadeh, M., 2014. Investigation on mechanical and thermal properties of giant milkweed (Calotropis persica) fibers -plastics composites.Iranian Journal of Wood and Paper Science Research, 29: 106-116. (In persian).
[20] Mohammadi, H., Madhoushi, M. and Zabihzadeh, M., 2014. Flextural .and Tensile properties of Rice Stalk Flour-Polypropylene Composite During Moisture Cyclic Loading, J. of Wood & Forest Science and Technology, 21: 195-206. (In persian).  
[21] Du, Y., Yan, N., Kortschot, T. and Farnood, R., 2014. Fabrication and characterization of fully biodegradable natural fiber-reinforced poly(lactic acid) composites. Composites: Part B, 56: 717–723.
[22] Kargarfard, A., 2013. The Infuence of Coupling Agent and the Content of Fibers on Tensile Strength and Physical Properties of Cotton Fiber Stem/Recycled Polypropylene Composites, Iranian Journal of Wood and Paper Industries, 2: 131-140. (In persian).
[23] Shakeri, A., Safdari, V.R., Rohnia, M. and Nourbakhsh, A., 2013. An analysis of the combined effects of isocyanate HMDI and maleic anhydride (MAPE) coupling agents on the mechanical properties of HDPE- wood flour composite. Iranian Journal of Wood and Paper Science Research, 28: 290-300. (In persian).
[24] Altun, Y., Dog˘an, M. and Bayramlı, E., 2013. Effect of Alkaline Treatment and Pre-impregnation on Mechanical and Water Absorbtion Properties of Pine Wood Flour Containing Poly (Lactic Acid) Based Green-Composites. J Polym Environ, 21: 850–856.
[25] Leu, S.Y, Lo, S.F. and Yang, T.H., 2012. Optimized material composition to improve the physical and mechanical properties of extruded wood–plastic composites (WPCs). Construction and Building Materials, 29: 120–127.
[26] Krzysik, N., 1999. Dependence of the mechanical properties of wood flour polymer composites on the moisture content. Applied Polymer Science, 68: 2069-2076.
[27] Rowell, M.L. and Jacobson, RE., 2000. Weathering performance of plant-fiber /thermoplastic composites. Cryst. And Liq., 353: 85-94.
[28] Hill, C., 2000. Wood/plastic composite strategies for compatibilising the phases. Institute of wood science, 15(3): 140-146.