ارزیابی زیست‌تخریب‌پذیری چندسازه ساخته‌شده از پلی‌لاکتیک‌اسید و آرد بامبو

نوع مقاله: مقاله پژوهشی

نویسندگان

1 دانشجوی کارشناسی ارشد گروه علوم و صنایع چوب و کاغذ، دانشکده منابع طبیعی، دانشگاه تهران، کرج، ایران

2 استاد گروه علوم و صنایع چوب و کاغذ، دانشکده منابع طبیعی، دانشگاه تهران، کرج، ایران

3 مربی گروه علوم و مهندسی چوب، دانشگاه فنی و حرفه‌ای ایران، دانشکده‌ی فنی شماره 2 ساری، ساری، ایران

چکیده

این مطالعه به ارزیابی زیست‌تخریب‌پذیر بودن چندسازه‌ی ساخته‌شده از آرد ساقه‌ی گیاه بامبو و پلی‌لاکتیک‌اسید با استفاده از آزمون ویژگی‌های فیزیکی و دوام زیستی می‌پردازد. از سوی دیگر، تأثیر مقدار و اندازه‌ی ذرات آرد ساقه‌ی گیاه بامبو بر ویژگی‌های فیزیکی و دوام زیستی چندسازه‌ی ساخته‌شده، از دیگر اهداف تحقیق حاضر بود. ازاین‌رو، ابتدا ذرات آرد ساقه‌ی گیاه بامبو و پلی-لاکتیک‌اسید در دستگاه اکسترودر دوماردون ناهمسوگرد باهم مخلوط و سپس به روش قالب‌گیری فشاری تخته‌های حاصله ساخته شدند. آنگاه نمونه‌های ساخته‌شده بر اساس شرایط تدوین‌شده در استاندارهای ASTM و113 EN- مورد ارزیابی قرار گرفتند. نتایج مشخص نمود که با افزایش مقدار و اندازه ذرات آرد بامبو واکشیدگی ضخامت و جذب آب چندسازه به شکل معناداری افزایش می‌یابد. هم‌چنین آزمون دوام زیستی چندسازه در برابر قارچ‌های عامل پوسیدگی نشان داد که با افزایش مقدار آرد بامبو میزان تخریب چندسازه‌ به‌ویژه در برابر قارچ عامل پوسیدگی قهوه‌ای به‌شدت افزایش یافت. این در حالی‌ بود که پلی‌لاکتیک‌اسید خالص در برابر قارچ‌ها دوام بسیار بالایی داشت.

کلیدواژه‌ها

موضوعات


[1] Barbosa Jr, V., Ramires, E C., Razera, I. A. T., and Frollini, E., 2010. Biobased composites from tannin–phenolic polymers reinforced with coir fibers. Industrial Crops and Products, 32(3), 305-312.

[2] Mohanty, A. Q., Misra, M. and Drzal, L. T., 2002. Sustainable bio-composites from renewable resources: opportunities and challenges in the green materials world. Journal of Polymers and the Environment, 10(1-2):19-26.‏

[3] Rosa, D., Rodrigues, T., Guedes, C. and Calil, M., 2003. Effect of thermal aging on the biodegradation of PCL, PHBV and their blends with starch in soil compost. Journal Applied Polymer Science, 89(13):3539–3546.

[4] Zini, E., Baiardo, M., Armelao, L.and Scandola, M., 2004. Biodegradable Polyesters Reinforced with Surface‐Modified Vegetable Fibers. Macromolecular bioscience, 4(3): 286-295.‏

[5] Puglia, D., Tomassucc,i A.and Kenny, J., 2003. Processing, properties and stability of biodegradable composites based on Mater-Biw and cellulose fibres. Polymer Advance Technology, 14(11-12):749–756.

[6] Vink, E. T., Rabago, K. R., Glassner, D. A.and Gruber, P. R., 2003. Applications of life cycle assessment to NatureWorks™ polylactide (PLA) production. Polymer Degradation and stability, 80(3): 403-419.‏

[7] Faruk, O., Bledzki, A. K., Fink, H. P.and Sain, M., 2012. Biocomposites reinforced with natural fibers: 2000–2010. Progress in polymer science, 37(11): 1552-1596.‏

[8] Drumright, R. E., Gruber, P. R.and Henton, D. E., 2000. Polylactic acid technology. Advanced materials, 12(23):1841-1846.‏

[9] Pilla, S., Gong, S., O'Neill, E., Rowell, R. M. and Krzysik, A. M., 2008. Polylactide‐pine wood flour composites. Polymer Engineering & Science, 48(3): 578-587.‏

[10] Huda, M. S., Drzal, L. T., Misra, M., Mohanty, A. K., Williams, K. and Mielewski, D. F., 2005. A study on biocomposites from recycled newspaper fiber and poly (lactic acid). Industrial & engineering chemistry research, 44(15): 5593-5601.‏

[11] Febrianto, F., Yoshioka, M., Nagai, Y., Mihara, M. and Shiraishi, N., 2001. Composites of wood and t rans-1, 4-isoprene rubber II: Processing conditions for production of the composites. Wood Science and Technology, 35(4): 297-310.‏

[12] Balasuriya, P. W., Ye, L., Mai, Y. W. and Wu, J., 2002. Mechanical properties of wood flake–polyethylene composites. II. Interface modification. Journal of applied polymer science, 83(12), 2505-2521.‏

[13] Holbery, J.and Houston, D., 2006. Natural-fiber-reinforced polymer composites in automotive applications. Journal of Miner Metal Mater, 58(11), 80-86.‏

[14] Summerscales, J., Dissanayake, N., Virk, A. and Hall, W., 2010. A review of bast fibres and their composites. Part 2–Composites. Composites Part A: Applied Science and Manufacturing, 41(10): 1336-1344.

[15] Sodjoudi, M.E.and Hemmati, A.R., 1993. Bamboo the Green Gold. Tehran. Building and Housing ResearchCenter,110pp. (In Persian).

[16] Scurlock, J.M.O., Dayton, D.C. and Hames, B., 2000. Bamboo: an overlooked biomass resource Biomass and Bioenergy, 19 (4), 229-244.

[17] Staki, M. and davazdaimami, S., 2012. A completed Guidelines for Growing & Conserving Lucky Bamboo.Tehran, Agricultural Extension and Education, 130pp. (In Persian).

[18] Ho, M. P., Lau, K. T., Wang, H.and Hui, D., 2015. Improvement on the properties of polylactic acid (PLA)  using bamboo charcoal particles. Composites Part B: Engineering, 81(1):14-25.‏

[19] Arao, Y., Fujiura, T., Itani, S. and Tanaka, T., 2015. Strength improvement in injection-molded jute-fiber-reinforced polylactide green-composites. Composites Part B: Engineering, 68 (2): 200-206.

[20] Oksman, K. and Lindberg, H., 1998. Influence of thermoplastic elastomers on adhesion in polyethylene-wood   flour composites. Journal of Applied Polymer Science, 68(11): 1845-1855.

[21] Morrell, J.J., Stark, N.M., Pendleton, D.E. and McDonald, A.G., 2006. Durability of Wood-Plastic Composites. Wood Design Focus, 16(3):7- 10.

[22] Fabiyi, S., Morrell, J.and Freitag, C., 2011. Effects of wood species on durability and chemical changes of fungal decayed wood plastic composites. Composites: Part A, 42(5): 501-510.

[23] Allahdady, M., Hedjazi, S., Jonoobi, M., Abdulkhani, A. and Jamalirad, L., 2017. Biodegradation behaviors and color change off composites based on type of bagasse pulp/polylactic acid. Iranian Journal of Wood and Paper Industries. 8 (1): 1-13. (In Persain).

[24] ASTM D-6400-04., 2004. Standard Specification for Compostable Plastics, ASTM International, West Conshohocken, PA,

[25] ASTM D 7031.,2005. Standard Guide for Evaluating Mechanical and Physical Properties of Wood-Plastic Composite Products.

[26] Hassani, S., Hosseini Hashemi, s.kh., Farsi, R. and Jahan Latibari, A., 2015. Identification and comparison of oil compounds derived from pyrolysis of beach sound wood and decayed wood using Gas Chromatography and Mass Spectrometry (GC/MS). Iranian Journal of Wood and Paper Science Research. 30 (2), 243-255. (In Persian).

[27] BS EN 113:1997. Standard test methods for Wood preservatives. Test method for determining the protective effectiveness against wood destroying basidiomycetes. Determination of the toxic values.

[28] Herrera-Estrada, L., Pillay, S.and Vaidya, U., 2008. Banana Fiber Composites for Automotive and Transportation Applications Automotive. composites conference exhibition. P.16-18.

[29] Du, Y., Yan, N., Kortschot, T. and Farnood, R., 2014. Fabrication an characterization of fully biodegradable natural fiber-reinforced poly(lactic acid) composites. Composites: Part B, 56(2): 717–723.

[30] Onuegbu, C.G. and Igwe, I.O., 2011. The Effects of filler contents and particle sizes on the mechanical and end-use properties of snail shell powder filled polypropylene. Materials Sciences and Application, 2(7): 811-817.

[31] Arjmand F, Barmar M. and Barikani M, 2012. Investigating the effect of isocyanate modification of wood fiber on the physical-mechanical properties and torque rheometry of wood-polyethylene composite. Mechanics of Structures and Fluxes, 1(2): 1-12.‏(In Persian).

[32] Qian, S., Sheng, K., Yao, W. and Yu, H., 2016. Poly (lactic acid) biocomposites reinforced with ultrafine bamboo‐char: Morphology, mechanical, thermal, and water absorption properties. Journal of Applied Polymer Science, 133(20):1-9.

[33] Yang, H. S., Kim, H.J., Park, H. J., Lee, B. J. and Hwang, T. S., 2006. Water absorption behavior and mechanical properties of lignocellulosic fillerpolyolefin bio-composites. Composite Structures,72(4): 429–437.

[34] Li, Y., Pickering, K. L. and Farrell, R. L., 2009. Analysis of green hemp fibre reinforced composites using bag retting and white rot fungal treatments. Industrial crops and products, 29(2-3): 420-426.

[35] Cassens, D., Johnson, B. R., Feist, W. C. and DeGroot, R. C., 1995. Selection and use of preservative-treated wood. Forest Products Society,154p.

[36] Unger, A., Schniewind, A. and Unger, W., 2001. Conservation of wood artifacts: a handbook. Springer Science and Business Media.‏790p.

[37] Liu, L., Hicks, K.B. and Liu, C.K., 2005. Biodegradable Composites from Sugar Beet Pulp and Poly(lactic acid). Agricultural and food chemistry, 53(23):9017-9022.

[38] Mankowski, M. and Morrel, J.J., 2000. Patterns of fungal attack in wood-plastic composites following exposure in a soil block test. Wood and Fibre Science,32(3): 340-345.

[39] Bari, E., Taghiyari, HR., Schmidt, O., Ghorbani, A. and Aghababaei, H., 2015. Effects of nano-clay on biological resistance of wood-plastic composite against five wood-deteriorating fungi. Maderas-Cienc Tecnol,17(1):205-212.

[40] Bari, E., Sistani, A., Taghiyari, HR., Morrell, JJ. And Cappellazzi, J., 2017. Influence of test method on biodegradation of bamboo-plastic composites by fungi. Maderas-Cienc Tecnol; 19(4): 455-462.