ارزیابی غیر مخرب ویژگیهای آکوستیکی و مکانیکی کمپوزیتهای ساخته شده از باگاس با استفاده از آزمون ارتعاش خمشی (کارخانه لوح سبز و کارون جنوب)

نوع مقاله: مقاله پژوهشی

نویسندگان

1 استادیار، گروه علوم و صنایع چوب و کاغذ، دانشکده منابع طبیعی، دانشگاه صنعتی خاتم الانبیا بهبهان، بهبهان، ایران

2 کارشناس ارشد، گروه علوم و صنایع چوب و کاغذ، دانشکده منابع طبیعی، دانشگاه تهران، کرج، ایران

3 دانشجوی دکتری، گروه علوم و صنایع چوب و کاغذ، دانشکده منابع طبیعی، دانشگاه تهران، کرج، ایران

چکیده

این تحقیق پتانسیل آزمون ارتعاش خمشی بعنوان یک آزمون غیر مخرب در ارزیابی ویژگیهای آکوستیکی و مکانیکی چندسازه های ساخته شده از باگاس (تفاله نیشکر) را مورد بررسی قرار داد. بدین منظور از 4 ورق کاملا سالم و بدون عیب تخته فیبر دانسیته متوسط (MDF) از محصولات کارخانه لوح سبز شوشتر و همچنین 4 ورق تخته خرده چوب (PB) ساخته شده از باگاس از محصولات کارخانه نئوپان کارون، 40 نمونه با ابعاد 6.1×4×36 سانتی متر تهیه و برای انجام آزمون غیر مخرب مذکور آماده و با نتایج حاصله از آزمون استاتیک مقایسه گردید. نتایج نشان داد که رفتار آکوستیکی نمونه های تخته خرده چوب متفاوت با نمونه های تخته فیبر بود. به طوریکه فرکانس رزونانس، سرعت موج، فاکتور کیفیت و ضریب آکوستیک در تخته خرده چوب به طور معنی داری بیشتر از مقادیر آن در تخته فیبر اندازه گیری شد. از طرفی اصطکاک داخلی موج در تخته خرده چوب کمتر و کارایی آکوستیک در هر دو نمونه تفاوت معنی داری را نشان نداد. در رابطه با ارزیابی مکانیکی تخته خرده چوب و تخته فیبر ساخته شده از باگاس، نتایج نشان داد که میانگین مقادیر مدول الاستیسیته حاصل از آزمون ارتعاش خمشی از مقادیر استاتیکی آن در تخته فیبر 15 درصد و در تخته خرده چوب 6 درصد بیشتر بود. در این تحقیق همچنین مشخص شد که دانسیته همبستگی مستقیم و قوی با سرعت موج و مدول الاستیسیته دارد اما این همبستگی در رابطه با سایر پارامترهای آکوستیکی در هر دو ماده مورد آزمایش، معکوس مشاهده گردید. همبستگی بالای بین مدول الاستیسیته استاتیک و دینامیک (0.71) و همچنین مدول گسیختگی استاتیک و مدول الاستیسیته دینامیک (0.44) این مسئله را نشان می دهد که آزمون ارتعاش خمشی ابزار مناسبی برای ارزیابی رفتار مکانیکی تخته فیبر دانسیته متوسط ساخته شده از باگاس است اما همبستگی در تخته خرده چوب ساخته شده مشاهده نگردید.

کلیدواژه‌ها


[1] Atchison, J. and McGovern, G.N., 1978. History of paper and the importance of non-wood plant fibers, Pulp and paper manufacture: secondary fibers and non -wood pulping, volume 3, TAPPI Press, Atlanta GA, Chap 1.
[2] Alfonso, A. and Herryman, D., 1990. Pulping from agro-based resources. Holzforschung, 44:58–63.
[3] Bucur, V., 2006. Acoustics of wood, 2nd ed., Springer Series in Wood Science, Springer, Berlin, Heidelberg, Germany, 393 p.
[4] Brancheriau, L., Baillères, H., Détienne, P., Gril, J. and Kronland, R., 2006. Key signal and wood anatomy parameters related to the acoustic quality of wood for xylophone-type percussion instruments. J Wood Sci, DOI 10.1007/s10086-005-0755-2.
[5] Vikram, V., Cherry, M.L., Briggs, D., Cress, D.W. and Howe, G.T., 2011. Stiffness of Douglas-Fir Lumber: effects of wood properties and genetics. Canadian Journal of Forest Research, 41(6): 1160-1173.
[6] Bodig, J., 1989. Mechanics of wood and wood composites (Persian translation), University of Tehran Press, 680 p.
[7] Hunt, J.F., Zhang H., Guo, Z. and fu, F., 2013. Cantilever beam static and dynamic response comparison with mid-point bending of thin MDF composite panels. Bio Resources, 8(1):115-129.
[8] Yoshihara, H., 2011. Measurement of the young s modulus and shear Modulus of in-plane quasi-isotropic medium- density fiberboard by flexural vibration. BioResources, 6(4): 4871-4885.

[9] Yoshihara, H., 2012. Influence of the specimen depth to length ratio and lamination construction on young modulus and in-plane shear modulus of plywood measured by flexural vibration. BioResources, 7(1): 1337-1351.
[10] Niemz, L.J., Kucera, E. and Pohler, E., .1997. Vergeleichende untersuchungen zur bestimmmung des dynamischen E.mouls mittels schall-laufzeit-und resonans frequenzmessung. Holzforschung und Holzverwertung, 49(5): 91-93.
[11] Mirbolouk, P. and Roohnia, M., 2015. Evaluation of dynamic Modulus of elasticity of medium density fiberboard panel from longitudinal vibration tests on specimens. Bio Resources, 10(1):613-621.
[12] Hamdan, S., Talib, Z.A., Rahman, R.M., Ahmed, A.S. and SaifulIslam, A., .2010. Dynamic yang’s modulus measurement of treated and post- treated tropical wood polymer composites. Bio Resources, 5(1): 324-341.
[13] Yan, L., Chouw, N. and Jayaraman, K., 2014. On energy absorption capacity, flexural and dynamic properties of flax/epoxy composite tubes. Fibers and Polymers, 15 (6):1270-1277.
[14] Saiful islam, M.D., Hamdan, S., Abidin Talib, Z., Ahmed, A.S. and Rezaur Rahman, M.D., 2012. Tropical wood polymer nanocomposite (WPNC) the impact of nanoclay on dynamic mechanical thermal properties. Composites science and Technology, 72(26):1995-2001.
[15] Senthil Kumar, K., Siva, I., Jeyaraj, P., Winowlin Jappes, J.T., Amico, S.C. and Rajini, N., 2014. Synergy of fiber length and content on free vibration and damping Behavior of natural fiber reinforced polyester composite beams. Materials and Design, (56): 379–386.
[16] Roohnia M., 2007. NDT-LAB; System to evaluate the mechanical properties of wood. IR Patent 44032/22 08.
[17] Abdolahian Sohi, A., Khademi-Eslam., H., Hemasi, AH., Roohnia M. and Talaiepour, M., 2011. Nondestructive detection of the effect of drilling on acoustic performance of wood. Bio Resources: 6(3):2632-2646.
[18] Schwarze, F.R., Spycher, M. and Fink, S., 2008. Superior wood for violins – wood decay fungi as a substitute for cold climate.New Phytologist, 179:1095–1104.
[19] Tsoumis, G., 1991. Science and technology of wood. Van Nostrand Reinold, Wegst, UGK. Wood for Sound. American Journal of Botany, 93(10): 1439–1448.
[20] Roohnia, M. and Tajdini, A., 2007. Investigation on the possibility of modulus elasticity and damping factor measurements, I timbers from Arizona Cypress using free vibration NDT in comparison with static bending and forced vibration NDT. Majale Keshavarzi, 13(4):1017-1027.(In Persian).
[21] Hasegawa, M., Takata, M., Matsumura, J. and Oda, K., 2011. Effect of wood properties on within-tree variation in ultrasonic wave velocity in softwood. Ultrasonics, 51:296-302.
[22] Bucur, V. and Chivers, R.C., 1991. Acoustic properties and anisotropy of some Australian wood species. Acustica, 75:69–75.
[23] Mishiro, A., 1996. Effect of density on ultrasonic velocity in wood. Mokuzai Gakkaishi, 42 (9):887–894.
[24] Kazemi Najafi, S., Abbasi Marasht, A. and Ebrahimi, Gh., .2007. Prediction of ultrasonic wave velocity in particleboard and fiberboard. J Mater Sci, 42:789-793.