An overview of the properties of nanofilters derived from cellulose nanofibers for the adsorption of air pollutants

Document Type : Research Paper

Authors

1 University of Tehran

2 Wood & paper. college of natural resources. university of Tehran

3 استادیار گروه علوم و صنایع چوب و کاغذ دانشگاه تهران

4 President , Irost

Abstract

Pollution from airborne particles is one of the most important threats to human and environmental health in the world. Today, industrial air filters use synthetic polymers based on oil and chemicals, these materials are incompatible with the environment and lead to secondary pollution. Therefore, the development of the use of new materials in the fabrication of air filters, which is not only environmentally friendly but also renewable, is a vital need. For this reason, in recent years, many researches and studies have been done to replace cellulose nanofiber (CNF) with synthetic fibers such as glass nanofibers, activated carbon, and plastic polymersnanofibers in the manufacture of air filters. CNF has many advantages such as biodegradability, cheapness, low density, and network structure that can compete with synthetic nanofibers. Therefore, this review study aims to investigate the general use of CNF for the adsorption of particulate matter (PM) and carbon dioxide (CO2) in the air. The results showed that CNF increase the adsorption efficiency of CO2 and PM due to the presence of active hydroxyl groups on the surface as well as high specific surface area. In addition, the nanofilters made of CNF have a lower pressure drop than filters on the market due to their small pore diameter.

Keywords

Main Subjects


[1] Fang, M., Chan, C. K., and Yao, X., 2009. Managing air quality in a rapidly developing nation: China. Atmospheric Environment, 43(1), 79-86.
[2] Zhang, R., Jing, J., Tao, J., Hsu, S. C., Wang, G., Cao, J., ... and Shen, Z., 2013. Chemical characterization and source apportionment of PM2.5 in Beijing: seasonal perspective. Atmospheric Chemistry and Physics, 13(14), 7053-7074.
[3] Andreae, M. O., & Rosenfeld, D., 2008. Aerosol–cloud–precipitation interactions. Part 1. The nature and sources of cloud-active aerosols. Earth-Science Reviews, 89(1-2), 13-41.
[4] Horton, D. E., Skinner, C. B., Singh, D., and Diffenbaugh, N. S., 2014. Occurrence and persistence of future atmospheric stagnation events. Nature climate change, 4(8), 698.
[5] Hailin, W., Zhuang, Y., Ying, W., Yele, S. U. N., Hui, Y. U. A. N., Zhuang, G., and Zhengping, H. A. O., 2008. Long-term monitoring and source apportionment of PM2. 5/PM10 in Beijing, China. Journal of Environmental Sciences, 20(11), 1323-1327.
[6] Peterson, G., Rapaka, S., Koski, N., Kearney, M., Ortblad, K., and Tadlock, L., 2017. A robust sebum, oil, and particulate pollution model for assessing cleansing efficacy of human skin. International journal of cosmetic science, 39(3), 351-354.
[7] Hu, A., and Apblett, A. (Eds.)., 2014. Nanotechnology for water treatment and purification. Switzerland: Springer International Publishing.
[8] Fuller, G. W., 1933. Progress in water purification. Journal (American Water Works Association), 25(11), 1566-1576.
[9] Rushton, A., Ward, A. S., and Holdich, R. G., 2008. Solid-liquid filtration and separation technology. John Wiley & Sons.
[10] Pendergast, M. M., and Hoek, E. M., 2011. A review of water treatment membrane nanotechnologies. Energy & Environmental Science, 4(6), 1946-1971.
[11] Sagle, A., and Freeman, B., 2004. Fundamentals of membranes for water treatment. The future of desalination in Texas, 2(363), 137.
[12] Pabby, A. K., Rizvi, S. S., and Requena, A. M. S., 2008. Handbook of membrane separations: chemical, pharmaceutical, food, and biotechnological applications. CRC press.
[13] Zhang, R., Liu, C., Hsu, P. C., Zhang, C., Liu, N., Zhang, J., ... and Cui, Y., 2016. Nanofiber air filters with high-temperature stability for efficient PM2. 5 removal from the pollution sources. Nano letters, 16(6), 3642-3649.
[14] Alghoraibi, I., and Alomari, S., 2018. Different methods for nanofiber design and fabrication. Handbook of nanofibers, 1-46.
 
[15] Niu, H., Wang, X.,  and Lin, T., 2012. Upward needleless electrospinning of nanofibers. J. Eng. Fibers Fabr., 7, 17–22.
[16] Dong, Y., Wang, M., Chen, L. and Li, M., 2012. Preparation, characterization of (PVDF HFP)/[bmim]BF4 ionic liquids hybrid membranes and their pervaporation performance for ethyl acetate recovery from water. Desalination, 295: 53–60.
[17] Ding, J., Zhang, M., Jiang, Z., Li, Y., Ma, J. and Zhao, J. 2012. Enhancing the permselectivity of pervaporation membrane by constructing the active layer through alternative self-assembly and spin-coating. Membrane Science, 390: 218–225
[18] Chen, G., Ushida, T. and Tateishi, T., 2002. Scaffold design for tissue engineering. Macromolecular Bioscience, 2:67-77.
[19] Schubert, D. W., and Dunkel, T., 2003. Spin coating from a molecular point of view: its concentration regimes, influence of molar mass and distribution. Materials Research Innovations, 7(5), 314-321.
[20] Kowalewski, T.A., Blonski, S., Barral, S., “Experiments and Modeling of Electrospinning Process”, Bull Polymer Academy Science, 53/4, 385- 394, 2005.
[21] Deitzel, J.M., Kleinmeyer, J., Harris, D., “The Effect of Processing Variables on the Morphology of Electrospun Nanofibers and Textiles”, Polymer, 42, 261-272, 2001.
[22] Sonseca, A., Peponi, L., Sahuquillo, O., “Electrospinning of Biodegradable Polylactide/Hydroxyapatite Nanofibers: Study on the Morphology, Crystallinity Structure and Thermal Stability”, Polymer Degradation and Stability, 97, 2052-2059, 2011.
[23] Sepahvand, S., Jonoobi, M. and Ashori, A., 2019. Chemical modification of cellulose nanofibers with phthalimide air filter to adsorb carbon dioxide. Wood and paper science research, 33(4): 531-543. (In Persian).
[24] Sepahvand, S., Jonoobi, M., Ashori, A., Gauvin, F., Brouwers, H.J.H., and Yu, Q., 2019. Surface modification of cellulose nanofiber aerogels using phthalimide. Polymer Composites. 41, 219–226.
[25] Salleh,W.N.W., Ismail, A.F., Matsuura,T. Abdullah, M.S., 2011. Precursor selection and process conditions in the preparation of carbon membrane for gas separation: A review, Separation & Purification Reviews, 40, 261-311.
[26]-Baker, R. W., 2012. Membrane technology and applications. John Wiley & Sons.
[27] Liu, C., Hsu, P. C., Lee, H. W., Ye, M., Zheng, G., Liu, N., Li, W., and Cui, Y. 2015. Transparent air filter for high-efficiency PM2.5 capture. Nature communications, 6(1), 1-9.
[28] Souzandeh, H., Molki, B., Zheng, M., Beyenal, H., Scudiero, L., Wang, Y., and Zhong, W. H., 2017. Cross-linked protein nanofilter with antibacterial properties for multifunctional air filtration. ACS applied materials & interfaces, 9(27), 22846-22855.
[29] Souzandeh, H., Johnson, K. S., Wang, Y., Bhamidipaty, K., and Zhong, W. H., 2016. Soy-protein-based nanofabrics for highly efficient and multifunctional air filtration. ACS applied materials & interfaces, 8(31), 20023-20031.
[30] Liu, X., Souzandeh, H., Zheng, Y., Xie, Y., Zhong, W. H., and Wang, C., 2017. Soy protein isolate/bacterial cellulose composite membranes for high efficiency particulate air filtration. Composites Science and Technology, 138, 124-133.
[31] Leung, D. Y., Caramanna, G. and Maroto-Valer, M. M., 2014. An overview of current status of carbon dioxide capture and storage technologies. Renewable and Sustainable Energy Reviews, 39: 426-443.
[32] Knöfel, C., Martin, C., Hornebecq, V. and Llewellyn, P. L., 2009. Study of carbon dioxide adsorption on mesoporous aminopropylsilane-functionalized silica and titania combining microcalorimetry and in situ infrared spectroscopy. The Journal of Physical Chemistry C, 113(52): 21726-21734.
[33] Ansaloni, L., Salas-Gay, J., Ligi, S. and Baschetti, M. G., 2017. Nanocellulose-based membranes for CO2 capture. Membrane Science, 522, 216-225.
[34] Darunte, L.A., Walton, K.S., Sholl, D.S. and Jones, C.W., 2016. CO2 capture via adsortion in amine-functionalized sorbents. Chemical Engineering, 12: 82-90.
[35] Dassanayake, R. S., Gunathilake, C., Dassanayake, A. C., Abidi, N., & Jaroniec, M., 2017. Amidoxime-functionalized nanocrystalline cellulose–mesoporous silica composites for carbon dioxide sorption at ambient and elevated temperatures. Journal of Materials Chemistry A, 5(16), 7462-7473.
[36] Hornbostel, M. D., Bao, J., Krishnan, G., Nagar, A., Jayaweera, I., Kobayashi, T., …. and Dubois, L., 2013. Characteristics of an advanced carbon sorbent for CO2 capture. Carbon, 56: 77-85.
[37] Daneleviciute, A., Katunskis, J. and Buika, G., 2009. Electrospun PVA Nanofibres for Gas Filtration Applications. Fibers & Textiles in Eastern Europe, 6(77): 40–43.
[38] Choi, S., Drese, J. H., Eisenberger, P. M., and Jones, C. W., 2011. Application of amine-tethered solid sorbents for direct CO2 capture from the ambient air. Environmental science & technology, 45(6): 2420-2427.
[39] Sung, S. and Suh, M. P., 2014. Highly efficient carbon dioxide capture with a porous organic polymer impregnated with polyethylenimine. Materials Chemistry A, 2(33), 13245-13249.
[40] Mahfoudhi, N. and Boufi, S., 2017. Nanocellulose as a novel nanostructured adsorbent for environmental remediation: a review. Cellulose, 24(3), 1171-1197.
[41] Svagan, A. J., Azizi Samir, M. A., and Berglund, L. A., 2007. Biomimetic polysaccharide nanocomposites of high cellulose content and high toughness. Biomacromolecules, 8(8), 2556-2563.
[42] Faruk, O., Bledzki, A. K., Fink, H. P., and Sain, M., 2012. Biocomposites reinforced with natural fibers: 2000–2010. Progress in polymer science, 37(11), 1552-1596.
[43] Jonoobi, M., Mathew, A. P., Abdi, M. M., Makinejad, M. D., and Oksman, K., 2012. A comparison of modified and unmodified cellulose nanofiber reinforced polylactic acid (PLA) prepared by twin screw extrusion. Journal of Polymers and the Environment, 20(4), 991-997.
[44] Bhat, G., Hegde, R. R., Kamath, M. G., and Deshpande, B., 2008. Nanoclay reinforced fibers and nonwovens. Journal of Engineered Fibers and Fabrics, 3(3), 155892500800300303.
[45] Kaboorani, A., and Riedl, B. 2015. Surface modification of cellulose nanocrystals (CNC) by a cationic surfactant. Industrial Crops and Products, 65, 45-55.
 [46] Yousefi, H., 2010. Cellulose nanofiber (CNF) for nanocomposites production: Opportunities and challenges. In Proceeding of the Sixth International Workshop on Green Composites, Sep. 8-10, Gumi, Korea, 2010 (pp. 151-154).
[47] Miyamoto, T., Takahashi, S.I., Ito, H., Inagaki, H., and Noishiki, Y., 1989. Tissue biocompatibility of cellulose and its derivatives. Biomedical Materials Research, 23:125-133.
[48] Valdebenito, F., García, R., Cruces, K., Ciudad, G., Chinga-Carrasco, G. and Habibi, Y., 2018. CO2 Adsorption of surface-modified cellulose nanofibril films derived from agricultural wastes. ACS Sustainable Chemistry & Engineering, 6(10): 12603-12612.
[49] Saljoughi, E., Sadrzadeh, M. and Mohammadi, T., 2009. Effect of preparation variables on morphology and pure water permeation flux through asymmetric cellulose acetate membranes. Membrane Science, 326(2): 627–634.
[50] Daneleviciute-Vaisnienee, A., Katunskis, J., and Buika, G., 2009. Electrospun PVA nanofibres for gas filtration applications. Fibres & Textiles In Eastern Europe, (6 (77)), 40-43.
[51] Lavoine, N., Desloges, I., Dufresne, A., and Bras, J., 2012. Microfibrillated cellulose–Its barrier properties and applications in cellulosic materials: A review. Carbohydrate polymers, 90(2), 735-764.
[52] Lim, S. K., Lee, S. K., Hwang, S. H., and Kim, H., 2006. Photocatalytic deposition of silver nanoparticles onto organic/inorganic composite nanofibers. Macromolecular Materials and Engineering, 291(10), 1265-1270.
 
[53] Sivakumar, M., Mohan, D. R., and Rangarajan, R., 2006. Studies on cellulose acetate-polysulfone ultrafiltration membranes: II. Effect of additive concentration. Journal of Membrane Science, 268(2), 208-219.
 
[54]-Liu, P., Sehaqui, H., Tingaut, P., Wichser, A., Oksman, K., and Mathew, A. P., 2014. Cellulose and chitin nanomaterials for capturing silver ions (Ag+) from water via surface adsorption. Cellulose, 21(1), 449-461.
[55] Khalil, H. A., Bhat, A. H., and Yusra, A. I., 2012. Green composites from sustainable cellulose nanofibrils: A review. Carbohydrate polymers, 87(2), 963-979.
[56] Cherian, B. M., Leão, A. L., de Souza, S. F., Costa, L. M. M., de Olyveira, G. M., Kottaisamy, M., ... and Thomas, S., 2011. Cellulose nanocomposites with nanofibres isolated from pineapple leaf fibers for medical applications. Carbohydrate Polymers, 86(4), 1790-1798.
[57] Dobreva, T., Benavente, R., Perena, J. M., Perez, E., Avella, M., Garcia, M., and Bogoeva‐Gaceva, G., 2010. Effect of different thermal treatments on the mechanical performance of poly (L‐lactic acid) based eco‐composites. Journal of applied polymer science, 116(2), 1088-1098.
 
[58] Nair, S. S., Zhu, J. Y., Deng, Y., and Ragauskas, A. J., 2014. Hydrogels prepared from cross-linked nanofibrillated cellulose. ACS Sustainable Chemistry & Engineering, 2(4), 772-780.
 
[59] Rosilo, H., Kontturi, E., Seitsonen, J., Kolehmainen, E., and Ikkala, O., 2013. Transition to reinforced state by percolating domains of intercalated brush-modified cellulose nanocrystals and poly (butadiene) in cross-linked composites based on thiol–ene click chemistry. Biomacromolecules, 14(5), 1547-1554.
 
[60] Cunha, A. G., and Gandini, A., 2010. Turning polysaccharides into hydrophobic materials: a critical review. Part 1. Cellulose. Cellulose, 17(5), 875-889.
 
[61] Espino-Pérez, E., Bras, J., Ducruet, V., Guinault, A., Dufresne, A., and Domenek, S., 2013. Influence of chemical surface modification of cellulose nanowhiskers on thermal, mechanical, and barrier properties of poly (lactide) based bionanocomposites. European Polymer Journal, 49(10), 3144-3154.
 
[62] Semba, T., Ito, A., Kitagawa, K., Nakatani, T., Yano, H., and Sato, A., 2014. Thermoplastic composites of polyamide‐12 reinforced by cellulose nanofibers with cationic surface modification. Journal of Applied Polymer Science, 131(20).
 
[63] Habibi, Y., Chanzy, H., and Vignon, M. R., 2006. TEMPO-mediated surface oxidation of cellulose whiskers. Cellulose, 13(6), 679-687.
 
[64] Pasquini, D., de Morais Teixeira, E., da Silva Curvelo, A. A., Belgacem, M. N., and Dufresne, A., 2008. Surface esterification of cellulose fibres: processing and characterisation of low-density polyethylene/cellulose fibres composites. Composites Science and Technology, 68(1), 193-201.
 
[65] Gousse, C., Chanzy, H., Cerrada, M. L., and Fleury, E., 2004. Surface silylation of cellulose microfibrils: preparation and rheological properties. Polymer, 45(5), 1569-1575.
 
[66] Hemraz, U. D., Boluk, Y., and Sunasee, R., 2013. Amine-decorated nanocrystalline cellulose surfaces: synthesis, characterization, and surface properties. Canadian Journal of Chemistry, 91(10), 974-981.
 
[67] Ashori, A., Babaee, M., Jonoobi, M., and Hamzeh, Y., 2014. Solvent-free acetylation of cellulose nanofibers for improving compatibility and dispersion. Carbohydrate polymers, 102, 369-375.
 
[68] Lam, E., Male, K. B., Chong, J. H., Leung, A. C., and Luong, J. H., 2012. Applications of functionalized and nanoparticle-modified nanocrystalline cellulose. Trends in biotechnology, 30(5), 283-290.
 [69] Gebald, C., Wurzbacher, J. A., Tingaut, P., Zimmermann, T., and Steinfeld, A., 2011. Amine-based nanofibrillated cellulose as adsorbent for CO2 capture from air. Environmental science & technology, 45(20), 9101-9108.
[70] Sehaqui, H., Gálvez, M. E., Becatinni, V., cheng Ng, Y., Steinfeld, A., Zimmermann, T., and Tingaut, P., 2015. Fast and Reversible Direct CO2 Capture from Air onto All-Polymer Nanofibrillated Cellulose-Polyethylenimine Foams. Environmental science & technology, 49(5), 3167-3174.
[71] Sepahvand, S., Jonoobi, M., Ashori, A., Gauvin, F., Brouwers, H.J.H., Oksman, K., and Yu, Q., 2020. A promising process to modify cellulose nanofibers for carbon dioxide (CO2) adsorption. Carbohydrate Polymers, 230, 115571.