Effect of poly lactic acid on physical and mechanical properties of wood plastic composite

Document Type : Research Paper

Authors

1 M.S. Department of wood and paper science and technology, Faculty of natural resources, University of Tehran, Karaj, Irann

2 M.S. Department of wood and paper science and technology, Faculty of natural resources, University of Tehran, Karaj, Iran

3 Ph.D. Student, wood composite products, Zabol university, Zabol, Iran

Abstract

In the present research, the mechanical and physical properties of poly lactic acid-canola stem flour composites made by compression molding technique were studied according to ASTM standards. According to the results achieved, it was found that modulus of rupture, tensile strength and impact strength were decreased by increasing the amount of Canola stem flour in comparison with pure PLA. In contrast, the elastic properties including Young's modulus, flexural modulus, and surface hardness increased. The addition of canola stem flour also increased water absorption and thickness swelling. Furthermore, a significant increase in the composite crystallinity degrees was observed in the study of thermal properties by DSC test. It can be concluded that the use of Canola stem as a cheap and renewable lignocellulose source can as well as having a filler role in making composites, improve some of the mechanical properties of the same composites.

Keywords

Main Subjects


[1] Mohanty, A. K., Misra, M. and Hinrichsen, G., 2000. Biofibers, biodegradable polymers and bio composites: an overview. Macromolecular materials and Engineering, 276(1), 1-24.‏
[2] Ohkita, T. and Lee, S. H., 2005. Crystallization behavior of poly (butylene succinate)/corn starch biodegradable composite. Journal of applied polymer science, 97(3), 1107-1114.‏
[3] Sujaritjun, W., Uawongsuwan, P., Pivsa-Art, W. and Hamada, H., 2013. Mechanical property of surface modified natural fiber reinforced PLA biocomposites. Energy Procedia, 34, 664-672.‏
[4] Meinander, K., Niemi, M., Hakola, J. S. and Selin, J. F., 1997. Polylactides‐degradable polymers for fibres and films. In Macromolecular Symposia, 123 (1), 147-153.
[5] Shen, L., Worrell, E. and Patel, M., 2010. Present and future development in plastics from biomass. Biofuels, Bioproducts and Biorefining, 4(1), 25-40.‏
[6] Mathew, A. P., Oksman, K. and Sain, M., 2005. Mechanical properties of biodegradable composites from poly lactic acid (PLA) and microcrystalline cellulose (MCC). Journal of applied polymer science, 97(5), 2014-2025.‏
[7] Mukherjee, T. and Kao, N., 2011. PLA based biopolymer reinforced with natural fibre: a review. Journal of Polymers and the Environment, 19(3), 714-725.
[8] Huda, M. S., Mohanty, A. K., Drzal, L. T., Schut, E. and Isra, M., 2005. Green” composites from recycled cellulose and poly (lactic acid): Physico-mechanical and morphological properties evaluation. Journal of Materials Science, 40(16), 4221-4229.
[9] Sharma, R., Raghupathy, V. P., Rao, S. S. and Shubhanga, P., 2015. Review of recent trends and developments in biocomposites. In International Conference on Recent Developments in Structural Engineering.‏
[10] Espert, A., Vilaplana, F. and Karlsson, S., 2004. Comparison of water absorption in natural cellulosic fibers from wood and one-year crops in polypropylene composites and its influence on their mechanical properties, Composites. Part A., 35(11): 1267–1276.
[11] Bledzki, AK., Reihmane, S. and Gassan, J., 1998. Thermoplastics reinforced with wood fillers: a literature review. Polymer-Plastics Technology and Engineering; 37(4): 451–68.
[12] La Mantia, F. P. and Morreale, M., 2011. Green composites: A brief review. Composites Part A: Applied Science and Manufacturing, 42(6), 579-588.‏
[13] Mahdavi, S., Habibi, M. R., Fakhryan, A. and Salehi, K., 2009. Comparative study on fiber dimension, density and  chemical components of two varieties of rapeseed straw. Iranian Journal of Wood and Paper Science Research, 24(1): 36-43. (In Persian).
[14] Enayati, A. A., Hamzeh, Y., Mirshokraiei, S. A. and Molaii, M., 2009. Papermaking potential of canola stalks. BioResources, 4(1), 245-256.‏
[15] Safarik, I., Lunackova, P., Mosiniewicz-Szablewska, E., Weyda, F. and Safarikova, M., 2007. Adsorption of water-soluble organic dyes on ferrofluid-modified sawdust. Holzforschung, 61(3), 247-253.‏ 
[16] Mohnty, A. K., Misra, M., Drzal, L. T., Selke, S. E., Harte, B. R. and Hinrichsen, G., 2005. Natural Fibers, Biopolymers, and Biocomposites: An Introduction. Natural Fibers, Biopolymers and Bio composites, Taylor & Francis: Boca Raton.‏
[17] Oksman, K., Skrifvars, M. and Selin, J.F., 2003. Natural fibres as reinforcement in polylactic acid (PLA) composites. Composites Science and Technology, 63(9): 1317-1324.
[18] Sanadi, A. R., Caulfield, D. F. and Rowell, R.M., 1994. Reinforcing polypropylene with natural fiber. Plastic Engineering, 1(4): 27-28.
[19] Oksman, K. and Lindberg, H., 1998. Influence of thermoplastic elastomers on adhesion in polyethylene-wood   flour composites. Journal of Applied Polymer. Science.68 (11): 1845-1855
[20] Turku, I., and Karki, T., 2013. Research progress in wood-plasti Nano composites: A review. Journal of Thermoplastic Composite Materials, 27(2), 180–204.
[21] Ho, M. P., Lau, K. T., Wang, H. and Hui, D., 2015. Improvement on the properties of polylactic acid (PLA)  using bamboo charcoal particles. Composites Part B: Engineering, 81, 14-25.‏
[22] Arao, Y., Fujiura, T., Itani, S. andTanaka, T., 2015. Strength improvement in injection-molded jute-fiber-reinforced polylactide green-composites. Composites Part B: Engineering, 68, 200-206.
[23] Birnin-Yauri, A. U., Ibrahim, N. A., Zainuddin, N., Abdan, K., Then, Y. Y. and Chieng, B. W., 2016. Enhancement of the Mechanical Properties and Dimensional Stability of Oil Palm Empty Fruit Bunch-Kenaf Core and Oil Palm Mesocarp-Kenaf Core Hybrid Fiber-Reinforced Poly (lactic acid) Biocomposites by Borax Decahydrate Modification of Fibers. BioResources, 11(2), 4865-4884.‏
[24] Yusoff, R. B., Takagi, H. and Nakagaito, A. N., 2016. Tensile and flexural properties of polylactic acid-based hybrid green composites reinforced by kenaf, bamboo and coir fibers. Industrial crops and products, 94, 562-573.‏   
[25] Sjostrom, E., 2013. Wood chemistry: fundamentals and applications. Elsevier.‏ 276p
[26] Nyambo, C., Mohanty, A. and Misra, M., 2010. Polylactide-based renewable green composites from agricultural residues and their hybrids. Biomacromolecules, 11: 1654–1660.
[27]  Rozman, H. D., Tay, G. S., Kumar, R. N., Abusamah, A., Ismail, H. and Ishak, Z. M., 2001. Polypropylene–oil palm empty fruit bunch–glass fibre hybrid composites: a preliminary study on the flexural and tensile properties. European Polymer Journal, 37(6), 1283-1291.‏
[28] Lee, S. Y., Yang, H. S., Kim, H. J., Jeong, C. S., Lim, B. S. and Lee, J. N., 2004. Creep behavior and manufacturing parameters of wood flour filled polypropylene composites. Composite Structures, 65(3-4), 459-469.
[29] Jozsef, B., 1982. Mechanics of wood and wood composites, 646p.‏
[30] Bataille, P., Richard, L. and Sapieh, S., 1989.Effect of cellulosic fibers in polypropylene composites. Journal of Polymer Composites, 10(2): 118-124.
[31] Chotirat, L., Chaochanchaikul, K. and Sombatsompop, N., 2007. On adhesion mechanisms and interfacial strength in acrylonitrile–butadiene–styrene/wood sawdust composites. International journal of adhesion and adhesives, 27(8), 669-678.‏
[32] Parsapajouh, D., 2009. Wood Technology., Tehran University Publications, Tehran, 404 p. (In Persian).  
[33]Yuan, Q. and Misra, R.D.K., 2006. IMPact fracture behavior of clay-reinforced polypropylene nanocomposites.Journal of Polymer Science (47) 4421-4433.
[34] Herrera-Estrada, L., Pillay, S. and Vaidya, U., 2008. Banana Fiber Composites for Automotive and Transportation Applications Automotive. composites conference and exhibition. P.18.
[35] Skaar, C., 1988. Wood-water relations. Springer Verlag: Berlin, etc, 283, 352-3.‏
[36] Sukmawan, R. and Takagi , H., 2015. Strength evaluation of cross-ply green composite laminates reinforced by bamboo fiber.Composites Part B 84 9-16.
[37] Krishnaprasad, R., Veena, N. R., Maria, H. J., Rajan, R., Skrifvars, M. and Joseph, K., 2009. Mechanical and thermal properties of bamboo microfibril reinforced polyhydroxybutyrate biocomposites. Journal of Polymers and the Environment, 17(2), 109-114.
[38] Quan, H., Li, Z. M., Yang, M. B. and Huang, R., 2005. On transcrystallinity in semi-crystalline polymer composites. Composites Science and Technology, 65(7-8), 999-1021.‏
[39] Tokoro, R., Vu, D. M., Okubo, K., Tanaka, T., Fujii, T. and Fujiura, T., 2008. How to improve  mechanical properties of polylactic acid with bamboo fibers. Journal of materials science, 43(2), 775-787.