A novel method for cellulose modification in aqueous media via alkoxysilane chemistry

Document Type : Research Paper

Authors

1 Ph.D. student of University of Tehran, University College of Agriculture and Natural Resources, Faculty of wood and Paper

2 department of pulp and paper thecnology, faculty of natural resources, University of Tehran

3 Department of wood and paper technology, faculty of natural resources, university college of agricultural sciences and matural resources, university of Tehran

4 University of Natural Resources and Life Sciences Vienna (BOKU), Department of Chemistry, Division of Chemistry of Renewable Resources.

5 University of Natural Resources and Life Sciences Vienna (BOKU), Department of Chemistry, Division of Chemistry of Renewable Resources (BOKU), Austria

Abstract

Surface modification of cellulose, as the world’s most abundant polymer, plays an important role in sustainable chemistry. Microcrystalline cellulose, Avicel, was modified by an alkoxysilane under mild conditions in water, at room temperature and with a catalytic amount of sodium hydroxide. (3-Mercaptopropyl)-trimethoxysilane in three concentrations 535, 1074, 1614 µmol/mL (100, 200, 300 µL of silane, respectively) was grafted onto cellulose, then the modified cellulose was characterized by FTIR spectroscopy as well as solid state 13C NMR and 29Si NMR spectroscopy. Increasing the concentration of the alkoxysilane from 353 to 1074 µmol/mL increased the ratio of siloxane bridges with the cellulose backbone, while by increasing the silane concentration from 1074 to 1614 µmol/mL, has inhanced the ratio of polysiloxane bridges relative to covalent links with the cellulose backbone from 34% to 66%.

Keywords


[1] Kawagoe, N., Kasori, Y. and Hasegawa, T., 2011. Highly C6-selective and quantitative modification of cellulose: nucleoside-appended celluloses to solubilize single walled carbon nanotubes. Cellulose, 18(1):83-93
[2] Thakur, M.K., Gupta, R.K. and Thakur, V.K., 2014. Surface modification of cellulose using silane coupling agent. Carbohydrate polymers, 111: 849-55.
[3] Wang, P., Meng, J., Xu, M., Yuan, T., Yang, N., Sun, T., Zhang, Y., Feng, X. and Cheng, B., 2015. A simple but efficient zwitterionization method towards cellulose membrane with superior antifouling property and biocompatibility. Journal of Membrane Science, 492: 547-58.
[4] Tee, Y.B., Talib, R.A., Abdan, K., Chin, N.L., Basha, R.K. and Yunos, K.F.M., 2013. Thermally grafting aminosilane onto kenaf-derived cellulose and its influence on the thermal properties of poly (lactic acid) composites. BioResources, 8:4468-83.
[5] Hafrén, J., Zou, W. and Córdova, A., 2006. Heterogeneous ‘organoclick’derivatization of polysaccharides. Macromolecular rapid communications, 27:1362-6.
[6] Liebert, T., Hänsch, C. and Heinze, T., 2006. Click chemistry with polysaccharides. Macromolecular rapid communications, 27:208-13.
[7] Pahimanolis, N., Hippi, U., Johansson, L-S., Saarinen, T., Houbenov, N., Ruokolainen, J., Houbenov, N., Ruokolainen, J. and Seppälä, J., 2011. Surface functionalization of nanofibrillated cellulose using click-chemistry approach in aqueous media. Cellulose, 18:1201-1211.
[8] Lahann, J., 2009. Click chemistry for biotechnology and materials science: Wiley Online Library.
[9] Elchinger, P-H, Montplaisir, D. and Zerrouki, R., 2012. Starch–cellulose crosslinking—Towards a new material. Carbohydrate Polymers, 87:1886-90.
[10] Heinze, T., Schöbitz, M., Pohl, M. and Meister, F., 2008. Interactions of ionic liquids with polysaccharides. IV. Dendronization of 6‐azido‐6‐deoxy cellulose. Journal of Polymer Science Part A: Polymer Chemistry, 46:3853-9.
[11] Koschella, A., Richter, M. and Heinze, T., 2010. Novel cellulose-based polyelectrolytes synthesized via the click reaction. Carbohydrate research, 345:1028-33.
[12] Krouit, M., Bras, J. and Belgacem, M.N., 2008. Cellulose surface grafting with polycaprolactone by heterogeneous click-chemistry. European Polymer Journal, 44:4074-81.
[13] Pierre-Antoine, F., François, B. and Rachida, Z., 2012. Crosslinked cellulose developed by CuAAC, a route to new materials. Carbohydrate research, 356:247-51.
[14] Pohl, M. and Heinze, T., 2008. Novel Biopolymer Structures Synthesized by Dendronization of 6‐Deoxy‐6‐aminopropargyl cellulose. Macromolecular Rapid Communications, 29:1739-45.
[15] Ritter, H., Knudsen, B., Mondrzik, B.E., Branscheid, R. and Kolb, U., 2012. Cellulose‐click‐ferrocenes as docking spots for cyclodextrin. Polymer International, 61:1245-8.
[16] Zhang, J., Xu, X-D., Wu, D-Q., Zhang, X-Z. and Zhuo, R-X., 2009. Synthesis of thermosensitive P (NIPAAm-co-HEMA)/cellulose hydrogels via “click” chemistry. Carbohydrate polymers, 77:583-9.
[17] Hettegger, H., Gorfer, M., Sortino, S., Fraix, A., Bandian, D., Rohrer, C., Harreither, W., Pothast, A. and Rosenau, T., 2015. Synthesis, characterization and photo-bactericidal activity of silanized xanthene-modified bacterial cellulose membranes. Cellulose, 22:3291-304.
[18] Hettegger, H., Sumerskii, I., Sortino, S., Potthast, A. and Rosenau, T., 2015. Silane meets click chemistry: towards the functionalization of wet bacterial cellulose sheets. ChemSusChem, 8:680-7.
[19] Feese, E., Sadeghifar, H. and Gracz, H.S., Argyropoulos, D.S. and Ghiladi, R.A., 2011. Photobactericidal porphyrin-cellulose nanocrystals: synthesis, characterization, and antimicrobial properties. Biomacromolecules, 12:3528-39.
[20] Huang, J-L., Li, C-J. and Gray, D.G., 2014. Functionalization of cellulose nanocrystal films via “thiol–ene” click reaction. RSC Advances, 4:6965-9.
[21] Tingaut, P., Hauert, R. and Zimmermann, T., 2011. Highly efficient and straightforward functionalization of cellulose films with thiol-ene click chemistry. Journal of Materials Chemistry 21:16066-76.
[22] Zhao, G.L., Hafrén, J., Deiana, L. and Córdova, A., 2010. Heterogeneous “Organoclick” Derivatization of Polysaccharides: Photochemical Thiol‐ene Click Modification of Solid Cellulose. Macromolecular rapid communications, 31:740-4
[23] Yuan, T., Meng, J., Gong, X., Zhang, Y. and Xu, M., 2013. Modulating pore size and surface properties of cellulose microporous membrane via thio-ene chemistry. Desalination, 328: 58-66.
[24] Meng, X. and Edgar, K.J., 2015. “Click” reactions in polysaccharide modification. Progress in Polymer Science.
[25] Hettegger, H., Beaumont, M., Potthast, A. and Rosenau, T., 2016. Aqueous Modification of Nano‐and Microfibrillar Cellulose with a Click Synthon. ChemSusChem, 9:75-9.
[26] Wang, J., Zhao, B., Zhao, L., Zhang, X. and Zhao, D., 2015. Preparation, characterization and application of a novel silane-bridged polyaniline/cotton fiber composite. Synthetic Metals, 204:10-6.
[27] Henniges, U., Vejdovszky, P., Siller, M., Jeong, M-J., Rosenau, T., and Potthast, A., 2011. Finally Dissolved! Activation Procedures to Dissolve Cellulose in DMAc/LiCl Prior to Size Exclusion Chromatography Analysis–A Review. Curr Chromatogr, 1:52-68.
[28] Salon, M.C.B., Gerbaud, G., Abdelmouleh, M., Bruzzese, C., Boufi, S. and Belgacem, M.N., 2007. Studies of interactions between silane coupling agents and cellulose fibers with liquid and solid‐state NMR. Magnetic Resonance in Chemistry, 45:473-83.
[29] Fernandes, S.C., Sadocco, P., Alonso-Varona, A., Palomares, T., Eceiza, A., Silvestre, A.J., Mondragon, I. and Freire, C.S.R., 2013. Bioinspired antimicrobial and biocompatible bacterial cellulose membranes obtained by surface functionalization with aminoalkyl groups. ACS applied materials & interfaces, 5:3290-7.