Study on the Effect of Heat Treatment on Physical Properties of Poplar and Beech Woods Impregnated with Nano-Copper and Nano-Silver

Document Type : Research Paper

Authors

Abstract

Present study conducted to review effects of heat treatment on weight loss, water adsorption, and thickness swelling of poplar (Populus nigra) and beech (Fagus oreintalis) woods impregnated with nano-copper and nano-silver. Specimens werepressur (2.5 bar) impregnated with 400 PPM water-based solution of nano-copper and nano-silver particles in a pressure vessel. For heat treatment, nano-cupper,  nano-silver impregnated and control specimens, were heat treated at 145°C temperature for 24 hours. Water absorption and thickness swelling decreased in heat treated and nano-heat treated specimens and this decrease in specimens impregnated with nano-copper and nano-silver was more obvious than in heat treated control specimens. The reasons were the degradation in crystal sections of celluloses chains and the ink variation of wood polymers. On the other hand, a comparison between heat treated and nano- heat treated specimens has shown weight loss further in nano-heat treated specimens. This shows that retent nano-copper and nano-silver by impregnation facilitates heat transfer in wood; and it may increase the process of degradation and pyrolysis of wood structures in inner parts of specimens.
 

Keywords


1- امین زاده لیافویی، فرهاد؛ 1389، بررسی تاثیر اشباع نانوسیلور بر میزان نفوذپذیری گازی چوب راش و صنوبر تیمارشده با یخ‌خشک (Dry Ice)، پایان‌‌نامه‌ی کارشناسی‌ ارشد،‌ ‌دانشگاه تربیت دبیر شهید رجایی، 98 صفحه.
2- پارساپژوه، داود، 1373، تکنولوژی چوب، انتشارات دانشگاه تهران، 404 صفحه.
3- Choi, S. U. S., YU, W., Lockwood, F. E., and grulk, E. A. (2001). Anomalous thermal conductivity enhancement in nanotube suspension, “ Appl. Physlett. 79, 2252-2254pp.
4- Colom X, Carrillo F, Nogue´ s F, Garriga P. (2003) Structural analysis of  photodegraded wood by means of FTIR spectroscopy. Polym Degrad Stab;80:543–9 pp.
5- Eastman, J. A. Choi, S. U. S., Li, W., and Thompson, W. (2001) Anomalously increased conductivity of ethylene glycol-based nano flluids contianing copper nanoparticle Appl. Physlett 78. 718-720 pp.
6- Garrote, G; Dominguez, H; and Parajo, J.C. (1999) Hydrothermal Processing of Lignocellulosic Materials; Holz als Roh-und Werkstof, 57 (3), 191 – 202pp.
7- Hakkou, M ; Pe trissans, M ; Zoulalian, A ; Gerardin, P. (2004). Investigation of wood wettability changes during heat treatment on the basis of chemical analysis. Polymer Degradation and Stability 91: 393-397pp.
8- Hakkou M, Pe´trissans M, Ge´rardin P, Zoulalian A. (2005) Investigation of wood wettability changes during heat treatment on the basis ofchemical analysis. Polymer Degradation and Stability; 89:1-5pp.
9- Hill, C. (2006) Wood Modification Chemical, Thermal and Other Processes; John Wiley & Sons, Ltd., ISBN: 0-470-02172-1; 239P.
10- Jana, S., Salehi-Khojin, and Zhong, W. H. (2007). Eenhancement of fluid thermal conductivety by the adition of single and hybrid nano additives, Thermchim. Acta 462, 45-55 pp.
11- Korkut, S. (2007). The effects of heat treatment on some technological properties in Uludag˘fir (Abies bornmuellerinana Mattf.) wood. Materials and Design 30 (2007) 1853–1858pp.
12- Kung, H. U., Kim, S. H., and Oh, J. M. (2006). Estimation of thermal conductivity of nanofluid using experimental effective particle volume, Exp. Heat Transfer 19, 181-191pp.
13- Latif, M. (2009). Heat Conduction, third edition, springer, 412-416 pp.
Pétrissans, M., Géradin, P., El-Bakali, I. and Seraj, M. (2003). Wettability of heat-treated wood.Holzforschung, 57(3), 301–307pp.
14- Li, Q, and Xuan, Y. (2006). Enhanced heat transfer behaviors of new heat carrier for spacecraft thermal managemant, J. Spacecraft rockets 43, 687-690pp.
15- Patel, H. E, Das, S. K,. Sundarjan, T., Nair, A. S., George, B., and Pradeep, T. (2003). Thermal conductivity naked and monolayer protected metal nanoparticles based nanofluid ; manifestation of anamolous enhancement and chemical effect. Appl. Phys lett 83, 2931-2933 pp.
16- Pétrissans, M., Géradin, P., El-Bakali, I. and Seraj, M. (2003). Wettability of heat-treated wood.Holzforschung, 57(3), 301–307pp.
17- Repellin, V. and Guyonnet, R. (2005). Evaluation of heat-treated wood swelling by differential scanning calorimetry in relation to chemical composition. Holzforschung, 59(1), 28–34pp.
18- Stamm, A.J. and Hansen, L.A. (1937). Minimizing wood shrinkage and swelling. Effect of heating in various gases. Industrial and Engineering Chemistry, 29(7), 831–833pp.
19- Taghiyari, H.R. (2011a). Study on the Effect of Nano-Silver Impregnation on Mechanical Properties of Heat-Treated Populus nigra, Wood Sci. and Tech., Springer-Verlag, 45: 399 – 404 pp. 
20- Taghiyari, H.R. (2011b) Effects of nano-silver on gas and liquid permeability of particleboard. Digest Journal of Nanomaterials and Bioresources, Vol. 6, No 4, October-December, 1517 – 1525pp.
21- Taghiyari HR, Rangavar H, Farajpour Bibalan, O. (2011). Nano-Silver in Particleboard. BioResources, 6(4): 4067 – 4075pp.
22- Taghiyari, H.R., Rassam, G., Lotfinejad Sani, Y., Karimi, A. ( 2012). Effects of nano-silver impregnation on some mechanical properties of ice-blasted specimens prepared from two native species. Journal of Tropical Forest Science, Accepted to be published on Jan.
23- Taghiyari, H.R. (2012). Correlation between Gas and Liquid Permeabilities in some Nano-Silver-Impregnated and Untreated Hardwoods. Journal of Tropical Forest Science, Accepted: JTFS 24(2): in press on April.
24- Tiemann, H.D. (1915). The Effect of Different Methods of Drying on the strength of Wood; Lumber World Review; 28 (7), 19-20PP.
25-Yu, W., Xie, H., Chen, L., and Li, Y. (2010). Investigation of the thermal transport properties of ethylene glycol-based nano flluids contianing copper nanoparticle Powder Technol. 197, 218-221PP.
26- Warrier, P., Teja, A. (2011). Effect of particle size on the thermal conductivity of nanofluids containing metallic nanoparticles, Vol 6:247.