اثر فشرده‌سازی بر خواص کاربردی چوب صنوبر اصلاح‌شده به روش‌های شیمیایی و گرمایی

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشیار دانشگاه علوم کشاورزی و منابع طبیعی ساری، دانشکده منابع طبیعی، گروه مهندسی چوب و کاغذ

2 دانشگاه تربیت مدرس

3 دانشگاه تهران

چکیده

در بررسی اثر فشرده­سازی بر خواص فیزیکی و مکانیکی گونه صنوبر دلتوئیدس (Populus deltoides) اصلاح شیمیایی و گرمایی شده، اصلاح گرمایی در دمای 170 درجه سانتی‌گراد، اصلاح شیمیایی با گلوتارآلدئید و فشرده­سازی در 3 سطح 10، 25 و 40 درصد در زمان پرس 2 ساعت انجام شد. دانسیته­ چوب اصلاح گرمایی و شیمیایی شده با افزایش فشردگی از 25 به 40 درصد، به ترتیب 13 و 8 درصد افزایش یافت. بازگشت فنری و جذب رطوبت در اصلاح تلفیقی گرمایی/فشرده­سازی بیشتر از شیمیایی/فشرده­سازی بود. جذب آب و واکشیدگی ضخامت در فشرده­سازی 10 درصد بیشتر از شاهد اصلاح شیمیایی و گرمایی بود، ولیکن با افزایش فشردگی، کاهش معنی­دار یافت. خواص مکانیکی در هر دو اصلاح گرمایی و شیمیایی با افزایش نسبت فشردگی بهبود یافت. بهبود مدول خمشی با افزایش فشردگی در هر دو اصلاح، از فشردگی 25 به 40 درصد، بیش از 10 به 25 درصد بود که در نمونه­های اصلاح گرمایی شده محسوس­تر بود. مقاومت نیز با افزایش فشردگی بهبود یافت، ولیکن نسبت این بهبود در فشردگی 40 درصد کاهش یافت. افزایش فشردگی به بهبود معنی­دار فشار موازی الیاف و سختی نیز انجامید که در نمونه­های اصلاح‌شده با گلوتارآلدئید در مقایسه با گرمایی محسوس­تر بوده است.

کلیدواژه‌ها


[1] Hill, C.A.S., 2006. Wood Modification: Chemical, Thermal and Other Processes. Wiley Series in Renewable Resources. Wiley and Sons: Chichester, Sussex, UK, 260p.
[2] Kocaefe, D., Younsi, R., Poncsak, S. and Kocaefe, Y., 2007. Comparison of different models for the high-temperature heat-treatment of wood. International Journal of Thermal Sciences, 46: 707-716.
[3] Esmaeeli, N., Ghorbani, M. and Beparva, P., 2016. Determination the optimal conditions of chemical modification on Poplar wood with Glutaraldehyde and physical properties of products. Iranian Journal of Wood and Paper Science Research, 2(31): 211-223.
[4] Esmaeeli, N., Ghorbani, M. and Beparva, P., 2018. Investigation on the physical properties of poplar wood ((Populus deltoides) modified with glutaraldehyde//parafin. Iranian Journal of Wood and Paper Industries, 8(4): 617-630.
[5] Xiao, Z. Xie, Y. Militz, H. and Mai, C., 2010. Effect of glutaraldehyde on water related properties of solid wood. Holzforschung, 64: 475-482.
[6] Xie, Y., A. Hill, C.A.S., Xiao, Z., Mai, C. and Militz, H., 2011. Dynamic water vapour sorption properties of wood treated with glutaraldehyde. Journal of Wood Science and Technology, 45: 49-61.
[7] Tjeerdsma, B.F. and Militz, H., 2005. Chemical changes in hydrothermal treated wood: FTIR analysis of combined hydro thermal and dry heat-treated wood. HolzalsRoh-und Werkstoff, 63(2): 102-111.
[8] Yildiz, S. and Gumuskaya, E., 2007. The effects of thermal modification on crystalline structure of cellulose in soft and hardwood. Building and Environment, 42: 62-67.
[9] Abe, K. and Yamamoto, H., 2006. Change in mechanical interaction between cellulose microfibril and matrix substance in wood cell wall induced by hygrothermal treatment. Wood Science, (52): 107-110.
[10] Mohebby, B. and Sanaei, I., 2005. Influences of the hydro-thermal treatment on physical properties of beech wood (Fagusorientalis). The International Research Group on Wood Preservation, IRG Document No. IRG/WP 05-40303.
[11] Boonstra, M.J., Van Acker, J., Kegel, E. and Stevens, M., 2006. Optimisation of a two-stage heat treatment process: durability aspects. Journal of Wood Science and Technology, 41: 31-57.
[12] Mohebby, B., Ilbeighi, F. and Kazemi-Najafi, S. 2007. Influence of hydrothermal modification of fibers on some physical and mechanical properties of medium density fiberboard (MDF). HolzalsRoh-und Werkstoff, 66: 213-218.
[13] Sundqvist, B., Karlsson, O. and Westermark, U. 2006. Determination of formic-acid and acetic acid concentrations formed during hydrothermal treatment of birch wood and its relation to colour, strength and hardness. Wood Science and Technology, 40: 549-561.
[14] Ahmed, S.H., More´n T., Hagman O., Cloutier A., Fang Ch. and Elustondo D., 2013. Anatomical properties and process parameters affecting blister/blow formation in densified European aspen and downy birch sapwood boards by thermo-hygro-mechanical compression. Journal of Materials Science, 24(48): 8571-8579.
[15] Blomberg, J., Persson, B. and Blomberg, A., 2005. Effects of semi-isostatic densification of wood on the variation in strength properties with density. Journal of Wood Science and technology, 39(5): 339-350.
[16] Sandberg, D., Haller, P. and Navi, P., 2013. Thermo-hydro and thermohydro-mechanical wood processing an opportunity for future environmentally friendly wood products. Wood Material Science and Engineering, 8(1): 64-88.
[17] Ülker, O., İmirzi, Ö. and Burdurlu E., 2012. The effect of densification temperature on some physical and mechanical properties of Scots pine (Pinus sylvestris). Bioresources, 7(4): 5581-5592.
[18] Navi, P. and Sandberg, D., 2012. Thermo Hydro Mechanical Processing of Wood, EPFL Press, Lausanne, Switzerland, 280 p.
[19] Pandey, K.K. and Pitman, A.J., 2003. FTIR studies of the changes in wood chemistry following decay by brown-rot and white-rot fungi. International Biodeterior-ation & Biodegradation, 52(3): 151-160.
[20] Windeisen, E., Ba¨chle, H., Zimmer, B. and Wegener, G., 2009. Relations between chemical changes and mechanical properties of thermally treated wood. 10th EWLP. Stockholm, Sweden, 25-28 August.
[21] Kariz, M., Kuzman, M.K., Semek, M., Hughes, M., Rautkari, L., Kamke, F. and Kutnar, A., 2017. Influence of temperature of thermal treatment on surface densification of spruce. . European Journal of Wood and Wood Products, 75(1): 113-123.
[22] Ding, T., Gu, L. and Liu, X., 2011. Influence of steam pressure on chemical changes of heat- treated Mongolian pine wood. BioResources, 6(2): 1880-1889.
[23] Boonstra, M.J. and Tjeerdsma, B., 2006. Chemical analysis of heat treated softwoods. HolzalsRoh-und Werkstoff. 64: 204-211.
[24] Morsing, N. and Hoffmeyer, P., 1998. Densification of Wood: The influence of hygrothermal treatment on compression of beech perpendicular to gain. Kgs. Lyngby, Denmark: Technical University of Denmark (DTU). (BYG-Rapport; No. R-79).
[25] Sharifnia, H. and Mohebby, B., 2010. Enhanced Mechanical Properties of Poplar Wood by a Combined-Hydro-Thermo-Mechanical (CHTM) Modification, Iranian Journal of Wood and Paper Industreis, 1(1): 57-66.
[26] Kutnar, A., Sernek, M. 2007. Densification of wood. Zbornik Gozdarstva in Lesarstva, 82: 53-62.
[27] Gong, M., Nakatani, M., Yang, Y. and Afzal, M., 2006. Maximum compression ratios of softwoods produced in eastern Canada. In: Proceedings of the 9th World Conference on Timber Engineering. Portland, Oregon, USA, 6-10 August.
[28] Bekhta, P., Proszyk, S., Krystofiak, T. and Lis, B., 2015. Surface wettability of short-term thermo-mechanically densified wood veneers. European Journal of Wood and Wood Product, 73: 415-417.
[29] Liu, H., Shang, J., Chen, X., Kamke, F.A., and Guo, K., 2013. The influence of thermal-hydro-mechanical processing on chemical characterization of Tsuga heterophylla. Journal of Wood Science and technology, 48:373-392.
[30] Dwianto, W., Morooka, T., Norimoto, M. and Kitajima, T., 2005. Stress relaxation of sugi (Cryptomeria japonica D. Don) wood in radial compression under high temperature steam. Holzforschung, 53: 541-546.
[31] Bao, M., Huang, X., Jiang, M., Yu, W. and Yu, Y., 2017. Effect of thermo-hydro-mechanical densification on microstructure and properties of poplar wood (Populus tomentosa). Journal of Wood Science, 63(6): 591–605.
[32] Inoue, M., and Norimoto, M., 2008. Fixation of compressive deformation in wood by pre-steaming. Journal of Tropical Forest Science, 20: 273-281.
[33] Hakkou, M., Ptrissans, M., Bakali, E.I., Gerardin, P., and Zoulalian, A., 2005. Investigation of wood wettability changes and mass loss during heat treatments of wood. Holzforschung, 59: 35-37.
[34] Hakkou, M., Petrissans, M., Gerardin, P. and Zoulalian, A., 2006. Investigations of the reasons for fungal durability of heat-treated beech wood. Polymer Degradation and Stability, 91:393-397.
[35] Sivonen, H., Maunu, S.L., Sundholm, F., Jämsä, S. and Viitaniemi, P., 2002. Magnetic resonance studies of thermally modified wood. Holzforschung, 56(6): 648-654.
[36] Kartal, SN., Green, F. and Clausen, C.A., 2009. Do the unique properties of nanometals affect leachability or efficacy against fungi and termites. International Biodeterior-ation & Biodegradation, 63: 490-495.
[37] Repellin, V. and Guyonnet, R., 2005.  Evaluation of heat treated wood swelling by differential scanning calorimetry in relation with chemical composition. Holzforschung, 59(1): 28-34.
[38] Adler, D.C., Bueher, M.J., 2013. Mesoscale mechanics of wood cell walls under axial strain. Soft Matter, 9: 7138-7144.
[39] Pfriem, A., Dietrich, T. and Buchelt, B., 2012. Furfuryl alcohol impregnation for improved plasticization and fixation during the densification of wood. Holzforschung, 66: 215-218
[40] Edalat, H.R., Tabarsa, T. and Reisi, M., 2008. Densification of Paullownia wood by using of hot-press. Iranian Journal of Wood and Paper Science Researc, 2(23):136-148.
[41] Keckes, J., Burgert, I., Fru¨hmann, K., Muller, M., Kolln, K. and Hamilton, M., 2003. Cell-wall recovery after irreversible deformation of wood. Nature Materials, 2: 810-813.
[42] Mami´nski, M.Ł.J., Pawlicki A.Z. and. Parzuchowski P., 2007. Glutaraldehyde modified MUF adhesive system Improved hot water resistance. HolzalsRoh-und Werkstoff, 65: 251-253.
[43] Boruvka, V., Zeidler, A., Holeˇcek, T., and Roman DudíkR., 2018, Elastic and Strength Properties of Heat-Treated Beech and Birch Wood, Forests, 9 (4): 197-214.
[44] Winday, J.E. and Rowell, M.R., 2005. Chemistry of wood strength. In: Wood Chemistry and Wood Composites. Ed. Rowell, M.R. Taylor and Francis, Boca Raton: 303-347.
[45] Kutnar, A., Kamke, F.A. and Sernek, M., 2008. The mechanical properties of densified VTC wood relevant for structural composites. HolzalsRoh-und Werkstoff, 66(6): 439-446
[46] Inoue, M., Norimoto, M., Tanahashi, M. and Rowell, R.M., 1993. Steam heat fixation ofcompressed wood. Wood and Fiber Science, 25(3): 224-235.
[47] Buchelt, B., Dietrich, T. and Wagenfu¨hr, A., 2012. Macroscopic and microscopic monitoring of swelling of beech wood after impregnation with furfuryl alcohol. European Journal Wood Product, 70(6): 865-869.
[48] Cai, J., Yang, X., Cai, L. and Shi, S.Q., 2013. Impact of the combination of densification and thermal modification on dimensional stability and hardness of poplar lumber. Drying Technology, 31(10): 1107-1113.
[49] Zhan, J.F., Cao, J. and Gu, J.Y., 2015. Surface-densification and hightemperature hydrothermal post treatment of the Abies nephrolepis lumber (in Chinese). Journal Nanjing Forest Univ (Natural Science Edition), 39(3): 119-124.
[50] Laine, K., Rautkari, L., Hughes, M. and Kutnar, A., 2013. Reducing the setrecovery of surface densified solid Scots pine wood by hydrothermal post-treatment. European Journal of Wood Products, 71(1): 17-23.
[51] Laine, K., Segerhol, K., Wålinder, M., Rautkari, L., Hughes, M. and Lankveld. C., 2016a. Surface densification of acetylated wood. European Journal of Wood and Wood Products, 74(6): 829-835.
[52] Yildiz, U.C., Yildiz, S.G and Gezer, E.D., 2005. Mechanical properties and decay resistance of wood-polymer composites prepared from fast growing species in Turkey. Bioresource Technology, 96:1003-1011.
[53] Laine, K., Segerhol, K., Wålinder, M., Rautkari, L. and Hughes, M., 2016b. Wood densification and thermal modification: hardness, set-recovery and micromorphology. Journal of Wood Science and Technolgy, 50:883-894.