اثر فشرده‌سازی سطحی چوب کاج جنگلی بر اشباع‌پذیری و توزیع میکروسکوپی محلول اشباع کننده در آن

نوع مقاله : مقاله پژوهشی

نویسندگان

1 گروه مهندسی علوم و صنایع چوب و کاغذ

2 کارشناسی ‌ارشد بیولوژی و آناتومی چوب ، دانشکده منابع طبیعی، پردیس کشاورزی و منابع طبیعی، دانشگاه تهران، کرج، ایران

3 دانشیار، گروه علوم و صنایع چوب و کاغذ، دانشگاه تهران

4 استادیار دانشکده منابع طبیعی دانشگاه تهران

چکیده

در این پژوهش، اثر فشرده­سازی سطحی بر اشباع­پذیری چوب کاج جنگلی و توزیع میکروسکوپی محلول اشباع در آن بررسی شد. فشرده­سازی در دو سطح 10 و 20 درصد و در دو جهت شعاعی و مماسی در دمای 160 درجه سانتی­گراد و فشار20 کیلوگرم بر سانتی­متر مربع در رطوبت تعادل 12 درصد برای مدت 3 دقیقه انجام شد. به‌منظور بررسی اشباع­پذیری، نمونه­ها به روش فشار متناوب همراه با خلاء ابتدایی با استفاده از رنگ رودامینB با غلظت5/0 درصد اشباع شدند و سپس با استفاده از نرم­افزار ImageJ و میکروسکوپ نوری، پارامترهای اشباع­پذیری اندازه­گیری شد. نتایج نشان داد که اثر فشرده­سازی بر اشباع­پذیری متأثر از جهت و مقدار فشرده­سازی است. در اثر فشرده­سازی، بر اشباع­پذیری پره­های چوبی افزوده شد ولی تراکئیدهای عرضی اشباع نشدند. اشباع­پذیری چوب پایان بهتر از چوب آغاز بوده و کانال­های رزینی نیز به‌خوبی اشباع‌شده بودند.

کلیدواژه‌ها

موضوعات


[1] Sandberg, D., Haller, and P., Navi, P. 2013. Thermo-Hydro and thermo-hydro-mechanical wood processing: an opportunity for future environmentally friendly wood products, Wood Material and Science & Engineering, 8(1): 64-88.
[2] Shams, M.D., and Yano, H. 2009. A new method for obtaining high strength pf resin impregnated wood composites at low pressing pressure. Journal of Tropical Forest Science. 21(2):175-180.
[3] Mehmandoost, M., and Khazaeian, A. 2014.The effect of chemical treatment and compression percent on mechanical properties off paulownia compressed wood. Iranian Journal of Wood and Paper Industries, 5(2): 69-80.
[4] Madhoushi, M., Grey, M.,Tabarsa, T., and Rafighi, A. 2012. Nail and screw withdrawal strength, moe and mor in densified poplar wood. Journal of Wood & Forest Science and Technology, 18(4): 45-58.
[5] Gabrielli, C., and Kamke, F. A. 2008. Treatment of chemically modified wood with vtc process to improve dimensional stability. Forest Products Journal, 58; 82-86.
[6] Sadatnezhad, SH., Khazaeian, A., Sandberg, D., and Tabarsa, T. 2017. Continuous surface densification of wood: a new concept for large-scale industrial processing. Bioresources, 12 (2): 3132-3122
[7] Laine, K., Rautkari, L., Hughes, M., Kutnar, A. 2103. Reducing the set-recovery of surface densified solid Scots pine wood by hydrothermal post-treatment. European Journal of Wood and Wood Products, 71 (1): 17–23
[8] Petric, M. 2013. Surface modification of wood: a critical review. Reviews of Adhesion and Adhesives, 1(2): 216-247.
[9] Usta, I. 2005. A review of the configuration of bordered pits to stimulate the fluid flow .Ciencia y tecnología, 7(2): 121-132.
[10] Morris, P.L., Byrne, A., Mackay, J.F.G., and Mcfarling, S.M. 1997. The effect of steaming prior to pressure treatment on the penetration of borates into western hemlock. Forest Products Journal, 47(3): 62-65.
[11] Lehringer, C., Richter, K., Schwarze, F, W. M. R., and Militz, H. 2009.A review on promising approaches for liquid permeability improvement in softwoods. Wood and Fiber Science, 41(4): 373:385.
[12] Hansmann, C., Gindl, W., Wimmer, R., and Teischinger, A.  2009. Permeability of wood: A review. Wood Research, 47(4):1-16.
[13] Lehringer, C. 2011. Permeability improvement of norway spruce wood with the white rot fungus physisporinus vitreus. Georg-August-University, Gottingen (PhD thesis).
[14] Emaminasab, M., Tarmian, A., and Pourtahmasi, K, 2015. Permeability of poplar normal wood and tension wood bioincised by physisporinus vitreus and xylaria longipes. International Biodeterioration & Biodegradation 105 .178-184.
[15] Emaminasab, M. , Tarmian, A. , Oladi, R., Pourtahmasi, K., and Avramidis,S. 2016. Fluid permeability in poplar tension and normal wood in relation to ray and vessel properties. Wood Science and Technology, 51:261–272.
[16] Dashti, H. Tarmian, A., Faezipour, M., Hedjazi, S., and Shahverdi, M. 2013. Mass transfer through microwave-treated fir wood (abies alba l.): a gymnosperm species with torus margo pit membrane. Drying Technology, (31); 359:364.
[17] Dashti, H., Tarmian, A., Faezipour, M., Hedjazi, S., Shahverdi, M. 2012. Effect of pre-steaming on mass transfer properties of fir wood (Abies alba L.); A gymnosperm species with torus margo pit membrane. Bioresources, 7(2): 1907-1918.
[18] Sayar, M., and Tarmian, A. 2013. Modification of water vapor diffusion in poplar wood (populus nigra l.) by steaming at high temperatures. Turkish Journal of Biology, 37: 511-515.
[19] Ramezanpour, M., Tarmian, A., and Taghiyari, H.R. 2015. Improving impregnation properties of fir wood to acid copper chromate (ACC) with microwave pre-treatment. iForest – Biogeosciences and Forestry, 8: 89-94.
[20] Xu, H., Taghiyari, H.R., Clauson, M., Milota, M.R., and Morrel, J.J. 2018. Effect of supercritical carbondioxide treatment on gas permeability of Palulownia fortunei heartwood and sapwood. Wood and Fiber Science, 51(1): 1-5.
[21] Kutnar, A.,Kamke ,FA, and Sernek, M. 2009. Density profile and morphology of viscoelastic thermal compressed wood. Wood Science and Technology, 43(1):57-68.
[22] Dogu, D.,Tirak ,K.,Candan, Z., and Unsal, O. 2010. Anatomical investigation of thermally compressed wood panels. Bioresources, 5(4): 2640-2663.
[23] Tirak Hizal, K., Dogu, D., Candan, Z., and Unsal, O. 2012. Anatomical investigation of thermally compressed eucalyptus wood panels. Proceedings of the 55th International Convention of Society of Wood Science and Technology, Beijing, CHINA Paper PS-6 .1 -7.
[24] Zhao, Y., Wang, Z., Iida, I., and Guo, J . 2018. Studies on pre-treatment by compression for wood impregnation i: effects of compression ratio, compression direction, compression speed and compression-unloading place on the liquid impregnation of wood: Journal of Wood Science, 64: 551-556.
[25] Bekhta, P, Mamonˇova, M., Sedliacˇik.j , and Nova´k, I. 2016. Anatomical study of short-term thermo-mechanically densified alder wood veneer with low moisture content. European Journal of Wood Products, 74:643–652.
[26] Tarmian, A., and Perre, P. (2009). Air permeability in longitudinal and radial directions of compression wood of Picea abies L. and tension wood of Fagus sylvatica L. Holzforschung, 63 (3): 352-356.
[27] Emaminasab, M., Tarmian, A., Oladi, R., Pourtahmasi, K., and Avramidis,S. 2016. Fluid permeability in poplar tension and normal wood in relation to ray and vessel properties. Wood Science and Technology, 51:261–272.
[28] Hamsmann, C.,Gindi, W., and Wimmer, R. 2002. Permeability of wood: a review. Wood Research, 47(4):1-16.
[29] Flynn, K. A. 1995. A review of the permeability, fluid flow, and anatomy of spruce (Picea spp.) Wood and Fiber Science, 7(3): 278:284.
[30] Abe, H., Funada R., Kuroda, N., Furusawa O., Shibagaki, M., and Fujii, T. 2001. Confocal laser scanning microscopy of water uptake during the recovery of compressed and drying-set wood. IAWA, 22(1):63–72.
[31] Matsumura, J. E., Booker, R. A., Donaldson, L.G. and Ridoutt, B. 1998. Impregnation of radiata pine wood by vacuum treatment: identification of flow paths using fluorescent dye and confocal microscopy. IAWA Journal, 19 (1): 25-33.