بورات ها و کاربرد آنها در حفاظت چندسازه‌های چوبی

نوع مقاله: مقاله پژوهشی

نویسندگان

1 استادیار گروه علوم و صنایع چوب و کاغذ، دانشکده منابع طبیعی، دانشگاه تهران، کرج، ایران

2 استاد گروه علوم و صنایع چوب و کاغذ، دانشکده منابع طبیعی، دانشگاه تهران، کرج، ایران

چکیده

چوب و هر چیز ساخته شده از آن در شرایط نامناسب بر اثر عوامل مخرب زنده و غیرزنده تخریب می‌‌شود. تاکنون روش‌ها‌ و مواد مختلفی برای بهبود معایب چوب و چندسازه‌های چوبی توسعه یافته‌اند. اما امروزه به دلیل نگرانی‌های عمومی در مورد اثرات سوء مواد حفاظتی قدیمی محققین به دنبال مواد دوست‌دار محیط زیست و ایمن هستند. بورات‌‌‌ها به دلیل سمیت حاد کم نامزد مناسبی برای نسل جدید مواد حفاظتی می‌باشند. بورات‌ها دامنه اثرگذاری وسیعی دارند، نه‌ تنها قارچ کش و حشره‌کش موثری هستند بلکه به عنوان یک کندسوز کننده نیز عمل می‌کنند. بورات‌ها به آسانی در آب حل شده و قابلیت انتشار تا عمق چوب را دارند. همین مزیت بورات‌ها بزرگترین عیب آنها نیز برشمرده می‌شود. فرمولاسیون‌های بر پایه بورات به آسانی آبشویی شده و برای مصارف بیرونی مناسب نیستند. امروزه علی‌رغم مشکل آبشویی، از بورات‌ها به دلیل سمیت بسیار کم به طور وسیعی برای حفاظت چوب و به ویژه چندسازه‌های چوبی در برابر عوامل مخرب زنده و غیر زنده مانند آتش استفاده می‌شود. در این گزارش سعی شده است جدیدترین تحقیقات انجام شده بر روی امکان استفاده از بورات‌ها در صنعت چندسازه‌های چوبی مورد بازبینی قرار گیرد. ترکیبات مختلف بورات قابلیت زیادی برای حفاظت چندسازه‌های چوبی دارند و در حال حاضر به صورت تجاری از آنها استفاده می‌شود.

کلیدواژه‌ها

موضوعات


[1] Reid, H., Huq, S., Inkinen, A., MacGregor, J., Macqueen, D., Mayers, J., Murray, L. and Tipper, R., 2004. Using wood products to mitigate climate change: a review of evidence and key issues for sustainable, International Institute for Environment and Development, London. 90p.

[2] Shi, S. and Walker, J., 2006. Primary wood processing: 391–426. In J. Walker, ed. Amsterdam: Springer-Verlag Berlin Heidelberg, 596p.

[3] Zobel, B., 1984. The changing quality of the world wood supply. Wood Science and Technology, 18(1): 1–17.

[4] Reinprecht, L., 2016. Wood Deterioration, Protection and Maintenance, John Wiley & Sons. 337p.

[5] Youngquist, J.A., 2010. Wood-based Composites and Panel Products. Chapter 11, In: Ross, R. J, ed. Wood Handbook Wood as an Engineering Material. USDA Forest Service, Forest Products Laboratory, General Technical Report FPL- GTR-190, 509 p.

[6] Laks, P.E., 2002. Biodegradation susceptibility of untreated engineered wood products. In: Proceedings of  Enhancing the Durability of Lumber and Engineered Wood Products. FPS Symposium Proceedings No. 7249. Madison, WI: Forest Products Society, pp. 125–130.

[7] Lebow, S.T., 2010. Wood Preservation. Chapter 15, In: Ross, R. J, ed. Wood handbook wood as an engineering material. USDA Forest Service, Forest Products Laboratory, General Technical Report FPL- GTR-190, 509 p. 

[8] Shmulsky, R. and Jones, P.D., 2011. Forest products and wood science 6th ed., Wiley-Blackwell. 478p.

[9] Hill, C.A.S., 2006. Wood modification, 1st ed., John Wiley & Sons. 239p.

[10] Caldeira, F., 2010. Boron in wood preservation–a review in its physico-chemical aspects. Silva Lusitana, 18(2): 179–196.

[11] Lebow, S., 2004. Alternatives to chromated copper arsenate for residential construction. Res. Pap. FPL-RP-618. Madison, WI: U.S. Department of Agriculture, Forest Service, Forest Products Laboratory. 9 p.

[12] Lloyd, J. D., 1997. International status of borate perservative systems. In: Proceedings of The seconed international conference on wood protection with diffusible preservatives and pesticidesed. Forests Products Society. Alabama, pp. 45–54.

[13] Obanda, D.N., Shupe, T.F. and Barnes, M.H., 2008. Reducing leaching of boron-based wood preservatives - a review of research. Bioresource technology, 99(15): 7312–7322.

[14] Freeman, M.H., Mcintyre, C.R. and Jackson, D., 2009. A critical and comprehensive review of boron, in wood preservation. In: Proceedings of the American Wood Protection Assoc.-AWPA, 105. pp. 279–294.

[15] Lloyd, J. D., Fogel, J. L. and Vizel, A., 2001. The use of zirconium as an inert fixative for borates in preservation. In: Proceedings of The International Research Group on Wood Preservation. Section 3 – Wood Protection Chemical. Document IRG/WP 01-30256. Nara, Japan.

[16] Kirkpatrick, J.W. and Barnes, H.M., 2006. Biocide Treatments for Wood Composites - A Review. In: Proceedings of The International Research Group on Wood Protection, IRG/WP 06-40323. 18-22 June, Tromsoe, Norway.

[17] Luo, J., Chen, H. and Morrell, J.J., 2005. Effect of borate on uptake and efficacy of an anti-sapstain treatment. In: Proceedings of The International Research Group on Wood Protection, IRG/WP 05-30380. Bangalore - India.

[18] Lloyd, J. D., Schoeman, M.W.and Stanley, R., 1998. Remedial timber treatment with borates. In W. H. Robinson, F. Rettich, & G. W. Rambo, eds. 3rd international conference on urban pests. Czech Republic, pp. 415–423.

[19] Thevenon, M.F., Tondi, G. and Pizzi, A., 2009. High performance tannin resin-boron wood preservatives for outdoor end-uses. European Journal of Wood and Wood Products, 67(1): 89–93.

[20] Lebow, S. et al., 2012. Guide for In-Place Treatment of Wood in Historic Covered and Modern Bridges. General Technical Report FPL-GTR-205. Madison, WI: U.S. Department of Agriculture, Forest Service, Forest Products Laboratory. 43 p.

[21] Humar, M. and Lesar, B., 2008. Fungicidal properties of individual components of copperethanolamine-based wood preservatives. International Biodeterioration & Biodegradation, 62(1):46–50.

[22] Drysdale, J.A., 1994. Boron treatments for the preservation of wood: A review of efficacy data for fungi and termites. In International Research Group on wood preservation. IRGWP94-30037. 29 May-3 June, Nusa Dua, Bali, Indonesia.

[23] Schoeman, M.W. and Lloyd, J.D., 1998. International standardisation: a hypothetical case study with stand-alone borate wood preservatives. In International Research Group on Wood Preservation IRG/WP 98-20147.14-19 June, Maastricht, The Low Countries.

[24] Ahmed, B.M. and French, J.R.J., 2005. Report and recommendations of the national termite workshop, Melbourne. International Biodeterioration and Biodegradation, 56(1): 69-74.

[25] Williams, L.H. and Amburgey, T.L., 1987. Integrated protection against lyctid beetle infestations: IV. Resistance of boron-treated wood to insect and fungal attack. Forest products journal, 37(2):10–17.

[26] Kartal, S.N., Hwang, W. J., Shinoda, K., and Imamura, Y., 2004. Decay and termite resistance of wood treated with boron-containing quarternary ammonia compound, didecyl dimetyl ammonium tetrafluoroborate (DBF) incorporated with acryl-silicon type resin. The International Research Group on Wood Preservation, IRG/WP 04-03334,6-10 June, Ljubljana, Slovenia.

[27] Reinprecht, L., 2010. Fungicides for Wood Protection – World Viewpoint and Evaluation/Testing in Slovakia: 95-122. In O. Carisse, ed. Fungicides. InTech, 548p.

[28] McCutcheon, S., Smith, G. M., Palfreyman, J. W.,  and Durrant, P., 1996. Effects of boron treatments on partially decayed oak and pitch pine heartwood. In International Research Group on Wood Preservation, IIRG/WP 96-30106. 19-24 May, Guadeloupe, French.

[29] Lesar, B., Pohleven, F. and Humar, M., 2010. Use of boron compounds for treatment of wooden historical objects. In Proceedings of Wood Science for Conservation of Cultural Heritage. pp. 2–6. Hamburg, Germany.

[30] Nine, M. J., Tran, D. N., Tung, T. T., Kabiri, S., and Losic, D., 2017. Graphene-Borate as an Efficient Fire Retardant for Cellulosic Materials with Multiple and Synergetic Modes of Action. ACS Applied Materials and Interfaces, 9(11): 10160–10168.

[31] Tsunoda, K., 2001. Preservative properties of vapor-boron-treated wood and wood-based composites. Journal of Wood Science, 47(2): 149–153.

[32] LeVan, S. L. and Winandy, J.E., 1990. Effects of fire retardant treatments on wood strength: a review. Wood and Fiber Science, 22(1): 113–131.

[33] Winandy, J. E., LeVan, S. L., Schaffer, E. L.and Lee, P. W., 1988. Effect of Fire-Retardant Treatment and Redrying on the Mechanical Properties of Douglas-Fir and Aspen Plywood. Research paper, FPL-RP-485, Forest Service, Forest Products Laboratory, U.S. Department of Agriculture, Madison, WI, 20 p.

[34] Ross, A.S., Ward, H.A. and Smith, W.R., 2003. An overview on new generation of preservation treatments for wood-based panels and other engineered wood products. In: Proceedings of the 7th European Panel Products Symposium. pp. 219–225.8-10 October, Wales, UK.

[35] Smith, W.R. and Wu, Q., 2005. Durability improvement for structural wood composites through chemical treatments current state of the art. Forest Products Journal, 55(2): 8–17.

[36] Wu, Q., 2004. Preservative-treated Structural Wood Composites For Durable Home Construction. In Procceding of NSF and HUD Housing Research Workshop, pp. 200–208. 11-14February, Orlando, USA.

[37] Manning, M.J., 2002. Wood protection processes for engineered wood products. In: Proceedings of Enhancing the Durability of Lumber and Engineered Wood Products. FPS Symposium. Forest Products Society. pp. 131–136. Madison, USA.

[38] Tascioglu, C. and Tsunoda, K., 2010. Biological performance of copper azole-treated wood and wood-based composites. Holzforschung, 64(3): 399–406.

[39] Tascioglu, C. and Tsunoda, K., 2012. Retention of copper azole and alkaline copper quat in wood-based composites post-treated by vacuum impregnation. Wood Research, 57(1): 101–110.

[40] Tascioglu, C., Yoshimura, T. and Tsunoda, K., 2013a. Biological Decay and Termite Resistance of Post- Treated Wood-Based Composites under Protected Above-Ground Conditions : A Preliminary Study after 36 Months of Exposure. Bioresource, 8(1): 833–843.

[41] Tascioglu, C., Akcay, C., Yalcin, M. and Sahin, H. I., 2014. Effects of post-treatment with CA and CCA on screw withdrawal resistance of wood based. Wood research, 59(2): 343–350.

[42] Khouadja, A. and  Barens, H.M., 2001. Treatment and redrying of western hemlock plywood. Forest products journal, 51(1), pp.74–80.

[43] Murphy, R. J., Dickinson, D. J., Turner, P., Wickens, P. J. and Hashim, R. 1993. Vapor boron treatment of wood composites: production of wood- based composite products. In IUFRO Symposium on Protection of Wood-Based Composite Products, Orlando, FL, Forest Products Society, Madison, WI. pp. 49–56.

[44] Turner, P., Murphy, R.J. and Dickinson, D.J., 1990. Treatment of wood-based panel products with volatile borate. In International Research Group on Wood Preservation document, IRG/WP 3616, 13-19 May, Rotorua, New Zealand.

[45] Barnes, H. and Murphy, R.., 2004. Bending and tensile properties of vapor boron treated composites. Wood and Fiber Science, 37(3): 379–383.

[46] Barnes, H.M., 2012. Durable Composites : An Overview. Proceedings of the American Wood Protection Assoc.-AWPA, 107. pp. 267–279.

[47] Colakoglu, G., Colak, S., Aydin, I., Yildiz, U. C. and Yildiz, S. 2003. Effect of Boric Acid Treatment on Mechanical Properties of Laminated Beech Veneer Lumber. Silva Fennica, 37(4): 505–510.

[48] Kartal, N.S., Ayrilmis, N. and Imamura, Y., 2007. Decay and termite resistance of plywood treated with various fire retardants. Building and Environment, 42(3): 1207–1211.

[49] Efhamisisi, D., Thevenon, M. F., Hamzeh, Y., Karimi, A. N., Pizzi, A. and Pourtahmasi, K., 2016. Induced tannin adhesive by boric acid addition and its effect on bonding quality and biological performance of poplar plywood. ACS Sustainable Chemistry & Engineering, 4(5), 2734-2740.

[50] Mamatha, B. S., Sujatha, D., Nath, S. K., Uday, D. N. and Nandanwar, A., 2017. Development of Fire Retardant Wood Composite Using Amino Resin: 353-361. In Pandey, K. K.,  Ramakantha, V., Chauhan, S. S.,  and Arun Kumar, A. N., eds. Wood is Good. Singapore: Springer. 479p. 

[51] Aydin, I.and Colakoglu, G., 2007. Variation in surface roughness, wettability and some plywood properties after preservative treatment with boron compounds. Building and Environment, 42(11): 3837–3840.

[52] Aydin, I., 2014. Effects of veneer drying at high temperature and chemical treatments on equilibrium moisture content of plywood. Maderas. Ciencia y tecnología, 16(4): 445–452.

[53] Bridaux, V., Charrier, B., Fauroux, N., Charrier, F.and Goncalez, J., 2001. Addition of Boron Based Compound in the LVL Glueline: Effect on the Mechanical Properties and the Leaching of Boron. Holzforschung, 55(5): 559–562.

[54] Nagieb, Z.A., Nassar, M.A. and El-Meligy, M.G., 2011. Effect of Addition of Boric Acid and Borax on Fire-Retardant and Mechanical Properties of Urea Formaldehyde Saw Dust Composites. International Journal of Carbohydrate Chemistry, 2011(1): 1–6.

[55] Lesar, B., Ugovsek, A., Kariz, M., Sernek, M.and Humar, M., 2011. Influence of boron compounds in adhesives on the bonding quality and fungicidal properties of wood. Wood research, 56(3): 385–392.

[56] Colakoglu, G. and Demirkir, C., 2006. Characteristics of plywood panels produced with urea formaldehyde resin containing borax. Holz als Roh- und Werkstoff, 64(3): 250–251.

[57] Sensogut, C., Ozalp, M. and Yesil, H., 2009. The effect of borax pentahydrate addition to urea formaldehyde on the mechanical characteristics and free formaldehyde content of plywood. International Journal of Adhesion and Adhesives, 29(5): 589–592.

[58] Efhamisisi, D., Hamzeh, Y., Thevenon, M. F.,Pizzi, A., Karimi, A. and Pourtahmasi, K., 2015. Accelerated Autocondensation of Quebracho Tannin Wood Adhesive by Boric Acid. Iranian journal for forest and wood Product ,68(1): 149–160.

[59] Efhamisisi, D., Thevenon, M. F., Hamzeh, Y., Pizzi, A., Karimi, A.and Pourtahmasi, K., 2017. Tannin-boron complex as a preservative for 3-ply beech plywoods designed for humid conditions. Holzforschung, 71(3): 249-258.

[60] Ayrilmis, N., 2007. Effect of fire retardants on internal bond strength and bond durability of structural fiberboard. Building and Environment, 42(3): 1200–1206.

[61] Ozdemir, F. and Tutuş, A., 2013. Effects of Fire Retardants on the Combustion Behavior of High-Density Fiberboard. Bioresource, 8(2): 1665–1674.

[62] Laks, P.E., 1999. The past, present, and future of preservative-containing composites. In: Proceedings of 33rd International Particleboard/Composite Materials Symposium. pp. 151–158. Pullman, WA.

[63] Xu, X., Lee, S., Wu, Y.and Wu, Q., 2013. Borate-Treated Strand Board from Southern Wood Species: Resistance Against Decay and Mold Fungi. Bioresource, 8(1): 104–114.

[64] Wu, Q., Lee, S. and Lee, J.N., 2002. Mechanical, Physical, and Biological Properties of Borate-Modified Oriented Strand board. In: Procceding of International Conference on Advances in Building Technology. Hong Kong, China.

[65] Simonsen, J., Freitag, C. M., Silva, A.and Morrell, J. J., 2004. Wood/plastic ratio: Effect on performance of borate biocides against a brown rot fungus.Holzforschung, 58(2): 205–208.

[66] Tascioglu, C., Yoshimura, T. and Tsunoda, K., 2013b. Biological performance of wood–plastic composites containing zinc borate: Laboratory and 3-year field test results. Composites Part B: Engineering, 51(1): 185–190.

[67] Altuntas, E., Narlioglu, N. and Hakki Alma, M., 2017. Investigation of the Fire, Thermal, and Mechanical Properties of Zinc Borate and Synergic Fire Retardants on Composites Produced with PP-MDF Wastes. Bioresource, 12(4): 6971–6983.

[68] Lindholm, J., Brink, A. and Hupa, M., 2016. Influence of fire retardants on the reaction-to-fire properties of coextruded wood–polypropylene composites. Fire and materials, 40(1): 535–543.

[69] Badritala, A., Hashemi, S. K. H., Kord, B., Zabihzadeh, S. M.and Safdari, V., 2013. Morphology and Mechanical Properties of Zinc Borate- Pretreated Poplar Wood Flour/Plastic Composite. Bioresource, 8(1): 913–922.

[70] Pizzi, A. and Baecker, A., 1996. A new boron fixation mechanism for environment friendly wood preservatives. Holzforschung, 50(6): 507–510.

[71] Lloyd, J. D., Dickinson, D.J. and Murphy, R.J., 1990. The Probable Mechanisms of action of boric acid and borates as wood preservatives. In International Research Group on Wood Preservation. IRG/WP/1450. 13-19 May, Rotorua, New Zealand.

[72] Lee, S.-Y.and Wu, Q., 2007. Leachability of Zinc Borate-Modified Oriented strandboard. Mokchae Knoghak, 35(5): 46–57.

[73] Humar, M., Pohleven, F.and Amartey, S. a., 2004. Influence of boron in CCB formulation on growth and decay capabilities of copper tolerant fungi. Holz als Roh- und Werkstoff, 62(3), pp.177–180.

[74] Palanti, S. and Feci, E., 2013. A Wood Preservative Based on Commercial Silica Nanodispersions and Boric Acid against Fungal Decay through Laboratory and Field Tests. Open Journal of Forestry, 3(2): 57–61.

[75] Salman, S., Pétrissans, A., Thévenon, M. F., Dumarçay, S., Perrin, D., Pollier, B.and Gérardin, P., 2014. Development of new wood treatments combining boron impregnation and thermo modification: effect of additives on boron leachability. European Journal of Wood and Wood Products, 72(3): 355-365.

[76] Salman, S., Thévenon, M. F., Pétrissans, A., Dumarçay, S., Candelier, K.and Gérardin, P., 2017. Improvement of the durability of heat-treated wood against termites. Maderas. Ciencia y tecnología, 19(3): 317-328.

[77] Tondi, G., Palanti, S., Wieland, S., Thevenon, M. F., Petutschnigg, A.and Schnabel, T., 2012. Durability of tannin-boron-treated timber. BioResources, 7(4), 5138-5151.

[78] Tondi, G., Schnabel, T., Wieland, S.and Petutschnigg, A., 2013. Surface properties of tannin treated wood during natural and artificial weathering. International Wood Products Journal, 4(3): 150-157.

[79] Tondi, G., Hu, J.and Thevenon, M. F., 2015. Advanced tannin based wood preservatives. Forest Products Journal, 65(3-4):526-526.