بررسی رفتار زیست‌تخریب‌پذیری، خواص گرمایی و ریخت‌شناسی نانوکامپوزیت‌های پلی‌کاپرولاکتون/ پلی‌لاکتیک اسید/ نانوکریستال سلولز

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجو دوره دکتری تخصصی فرآورده های چندسازه چوب، دانشگاه زابل، زابل، ایران.

2 دانشیار گروه علوم و صنایع چوب و کاغذ، دانشگاه زابل، زابل، ایران.

3 دانشگاه تهران

4 گروه شیمی پلیمر، دانشکده شیمی، دانشگاه امیرکبیر، تهران، ایران

5 استادیار گروه علوم و صنایع چوب و کاغذ، دانشگاه زابل، زابل، ایران.

چکیده

هدف این پژوهش، بررسی رفتار زیست­تخریب­پذیری و خواص گرمایی نانوکامپوزیت­های پلی­کاپرولاکتون/ پلی­لاکتیک اسید/ نانوکریستال سلولز بود. پلی­کاپرولاکتون و پلی­لاکتیک اسید با نسبت­های 100/0، 95/5، 90/10 و 80/20 درصد در کلروفرم حل شدند و نانو­کریستال سلولز در سطوح 0، 5/0، 1 و 3 درصد به ترکیبات اضافه شد و نانوکامپوزیت­ها به روش ریخته­گری حلال تهیه شدند. سپس، رفتار زیست‌تخریب‌پذیری آن­ها در محیط خاک بررسی شد. خواص گرمایی نانوکامپوزیت­ها، توسط آزمون­های وزن سنجی گرمایی و گرماسنجی روبشی تفاضلی بررسی شد. میکروسکوپ الکترونی پویشی گسیل­میدانی نیز برای مطالعه میکروسکوپی نانوکامپوزیت­ها، استفاده شد. نتایج نشان داد که با افزایش نانو­کریستال سلولز تا 1 درصد، کاهش جرم نانوکامپوزیت­ها افزایش یافت، اما افزودن 3 درصد از آن منجر به افت کاهش جرم نانوکامپوزیت­ها شد. با افزایش پلی­لاکتیک اسید، تا 10 درصد، کاهش جرم کامپوزیت­ها کاهش یافت اما افزودن 20 درصد از آن منجر به افت کاهش جرم کامپوزیت­ها شد. افزودن نانوکریستال سلولز به پلی­کاپرولاکتون، مقاومت گرمایی آن را افزایش داد، اما افزودن پلی­لاکتیک اسید این مقاومت را کاهش داد. نتایج میکروسکوپ الکترونی پویشی، تخریب نانوکامپوزیت­ها در خاک را تائید کردند.

کلیدواژه‌ها


[1] Salehpour, SH., Jonoobi, M., Oksman, K., Ahmadzadeh, M. and Khanali, M., 2018. Study of biodegradability and mechanical properties of polyvinyl alcohol (PVA) reinforced with cellulose nanofiber (CNF). Iranian Journal of Wood and Paper Industries, 8(4): 497-508. (In Persian).
[2] Blázquez, E., Pérez, E., Lorenzo, V. and Cerrada, M. L., 2019. Crystalline Characteristics and Their Influence in the Mechanical Performance in Poly("-Caprolactone) / High-Density Polyethylene Blends. Polymers, 11(11): 1874.
[3] Hivechi, A., Hajir Bahrami, S. and Siegel, R.A., 2019. Drug release and biodegradability of electrospun cellulose nanocrystal reinforced polycaprolactone. Materials Science and Engineering: C, 94:929-937.
[4] Arrieta, M.P., Fortunati, E., Dominici, F., López, J. and Kenny, J.M., 2015. Bionanocomposite films based on plasticized PLA–PHB/cellulose nanocrystal blends. Carbohydrate Polymers, 121:265-275.
[5] Sessini, V., Navarro-Baena, I., Arrieta., M.P., Dominici, F., Lopez, D., Torre., L. Kenny., J.M. Dubois., P. Raquez., J. M. and Peponi., L., 2018. Effect of the addition of polyester-grafted-cellulose nanocrystals on the shape memory properties of biodegradable PLA/PCL nanocomposites. Polymer Degradation and Stability, 152: 126-138.
[6] Ashori, A.R., Shahreki, A. and Ismaeilimoghadam, S., 2019. Effects of cellulose nanocrystal addition on the properties of polyhydroxybutyrate-co-valerate (PHBV) films. Iranian Journal of Wood and Paper Industries, 10(1):153-164. (In Persian).
[7] Garcia, D.G., Martinez, J.L., Balart, R., Strömberg, E. and Moriana, R., 2018. Reinforcing capability of cellulose nanocrystals obtained from pine cones in a biodegradable poly(3-hydroxybutyrate)/poly(ε-caprolactone) (PHB/PCL) thermoplastic blend. European Polymer Journal, 104:10-18.
[8] Ju, D., Han, L., Guo, Z., Bian, J., Li, F., Chen, S., and Dong, L., 2015. Effect of the diameter of poly (lactic acid) fiber on the physical properties of poly(ɛ-caprolactone). International Journal of Biological Macromolecules, 76: 49-57.
[9] ASTM D5988-03, Standard Test Method for determining aerobic biodegradation in soil of plastic materials or residual plastic materials after composting, Annual book of ASTM: American Society for Testing and Materials, Philadelphia, PA, 2003.
[10] Kalita, N. K., Bhasney, S.M., Mudenur, C., Kalamdhad, A. and Katiyar, V., 2020. End-of-life evaluation and biodegradation of Poly (lactic acid) (PLA)/Polycaprolactone (PCL)/Microcrystalline cellulose (MCC) polyblends under composting conditions. Chemosphere, 247(8):125875.
[11] Germiniani, L. G. L., Da Silva, L. C. E. D., Plivelic, T. S. and Goncalves, M. C., 2019. Poly(e-caprolactone)/cellulose nanocrystal nanocomposite mechanical reinforcement and morphology: the role of nanocrystal pre-dispersion. Composites. journal of Materials Science, 54: 414–426.
 [12] Gibril, M. E., Ahmed, K., Lekha, P., Sithole, B., Khosla, A., and Furukawa, H., 2019. Effect of nanocrystalline cellulose and zinc oxide hybrid organic-inorganic nanofiller on the physical properties of polycaprolactone nanocomposite films. Microsystem Technologies, DOI:10.1007/s00542-019-04497-x.
 [13] Hoidy, W. H., Ahmad, M. B., Al-Mulla, J. and Ibrahim, N. A. B., 2010. Preparation and Characterization of Polylactic Acid/Polycaprolactone Clay Nanocomposites. Journal of Applied Sciences, 10(2): 97-106.