مقایسه اثر اصلاح دیواره ای با گلیسیدیل متاکریلات و انیدریدمالئیک بر خواص فیزیکی، مکانیکی و زیستی چوب پلیمر استایرن

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشیار دانشگاه علوم کشاورزی و منابع طبیعی ساری، دانشکده منابع طبیعی، گروه مهندسی چوب و کاغذ

2 دانشگاه تربیت مدرس

چکیده

اصلاح چوب با اصلاح‌کننده‌های دیواره‌ای مانند اپوکسیدها و انیدریدها می‌تواند به تغییر خواص کاربردی چوب منتهی ‌شود. این احتمال وجود دارد که تغییر شرایط واکنش در اصلاح با ترکیبات شیمیایی دارای واکنش‌پذیری متفاوت، اثر مطلوب‌تری بر خواص چوب داشته-باشد. این پژوهش با هدف بررسی اثر اصلاح دیواره‌ای با گلیسیدیل‌متاکریلات و انیدریدمالئیک بر خواص کاربردی چوب‌پلیمر صنوبر-استایرن انجام شد. نمونه‌های آزمونی به 10 گروه شاهد، اشباع با مونومر استایرن، و اصلاح تلفیقی دیواره‌ای (گلیسیدیل‌متاکریلات یا انیدریدمالئیک) در 4 غلظت 10، 20، 30 و 40 درصد/ اشباع با مونومر استایرن تفکیک شدند. اصلاح‌ دیواره‌ای با افزایش معنی‌دار ‌وزن و نرخ تبدیل مونومر به پلیمر، موجب بهبود آب‌گریزی و ثبات ابعاد نمونه‌های چوب‌پلیمر گردید که برای گلیسیدیل‌متاکریلات بیش از -انیدریدمالئیک بود. با افزایش غلظت گلیسیدیل‌متاکریلات از 30 به 40 درصد و حجیم‌شدگی دیواره‌سلولی، احتمالاً ترک‌هایی در دیواره ایجاد ‌شد که به افزایش جذب آب و تغییرات ابعاد انجامید. وجود مونومر در کنار اصلاح دیواره‌ای با کاهش قطبیت چوب، توزیع مناسب مونومر در ساختار چوب، و بهبود اتصال پلیمر و چوب، سبب افزایش خواص مکانیکی فرآورده چوب‌پلیمر شد که در نمونه‌های اصلاح شده با گلیسیدیل‌متاکریلات/استایرن، بیشترین بهبود را نشان داد. اصلاح دیواره با انیدریدمالئیک و گلیسیدیل‌متاکریلات از طریق کاهش گروه‌های هیدروکسیل، تغییر ساختار هلوسلولز، و حضور پلیمر به‌عنوان یک مانع فیزیکی سخت در چوب، از توسعه میسیلیوم‌های قارچ جلوگیری نمود. اثر گلیسیدیل‌متاکریلات تا غلظت 20 درصد در تلفیق با مونومر بر بهبود مقاومت زیستی محسوس‌تر بود و با افزایش غلظت به 40 درصد، اختلاف آماری معنی‌داری با انیدریدمالئیک مشاهده‌نشد. بهبود خواص مکانیکی نمونه‌های اصلاح شده را می‌توان به تشکیل پلیمرها با کارایی عالی و اثر خوب کمپلکس پلیمر با دیواره‌های سلولی نسبت داد. اثر گلیسیدیل‌متاکریلات تا غلظت 20 درصد در اغلب خواص محسوس‌تر از انیدریدمالئیک بود، ولی با افزایش غلظت و احتمالاً ظهور ترک‌هایی در دیواره سلولی، کارآمدی اصلاح انیدریدمالئیک بیشتر از گلیسیدیل‌متاکریلات شد.

کلیدواژه‌ها


[1] Saiful Islam, MD., Hamdan, S., Hasan, M., Ahmed, A.S. and Rahman, M.R., 2012. Effect of coulling on the mechanical and biological properties of tropical wood polymer composites (WPC). International Biodeteriortion & Biodegradation, 72: 108-113.
[2] Ghorbani, M., Nikkhah Shahmirzadi, A., and Amininasab, S.M., 2017. Physical and Morphological Properties of Combined Treated Wood Polymer Composites by Maleic Anhydride and Methyl Methacrylate. Journal of Wood Chemistry and Technology, 37:443–450.
[3] Ghorbani, M., Poorzahed, N., and Amininasab, S.M., 2020. Morphological, physical, and mechanical properties of silanized wood-polymer composite. Journal of composite materials, 54(11) 1403–1412.
[4] Li, Y.F., Liu, Y.X., Wang, X.M., Wu, Q.L., Yu, H.P. and Li, J. 2010a. Wood-polymer Composites prepared by the in situ polymerization of monomers within wood. Journal of Applied Polymer Science, 119(6):3207-3216.
[5] Das, O., Sarmah, A.K. and Bhattacharyya, 2015. A sustainable and resilient approach through biochar addition in wood polymer composites. Science of the Total Environment. 512-513: 326-336.
[6] Devi, R.R., Ali, I., and Maji, T.K., 2008. Chemical modification of rubber wood with styrene and glycidyl methacrylate. Polymer Composites, 10.1002/pc.20423.
[7] Ghorbani, M., Asghari Aghmashadi, Z., Amininasab, S.M., Abedini, R., 2019a. Effect of different coupling agents on chemical structure and physical properties of vinyl acetate/wood polymer composites, Journal of Applied Polymer Science, DOI: 10.1002/APP.47467.
[8] Ghorbani, M., Asghari Aghmashadi, Z., Amininasab, S.M., Abedini, R., 2019b. Effect of different coupling agents on thermal, mechanical and biological behavior of vinyl acetate-wood polymer composite, Holzforschung, DOI:10.1515/hf-2018-0175.
[9] Feist, W.C., Rowell, R.M., and Ellis, W.D., 1989. Moisture sorption and accelerated weathering of acetylated and methacrylated aspen. Wood and Fiber Science, 23(1): 128-136.
[10] Devi, R.R and Maji, T.K., 2007. Effect of glycidyl methacrylate on the physical properties of wood polymer composites. Polymer Composites, (28), 10. 1002/pc, 1-5.
[11] Panov, D. and Terziev, N., 2009. Study on some alkoxysilanes used for hydrophobation and protection of wood against decay. International Biodeterioration& Biodegradation, 63:456-46.
[12] Yildiz, U.C., Yildiz, S.G. and Gezer, E.D., 2005. Mechanical properties and decay resistance of wood–polymer composites prepared from fast growing species in Turkey. Bioresource Technology, 96:1003-1011.
[13] Jani, M., Rozman, D., and Rahim, S., 2007. Rubber wood-polymer Composites: The Effect of Chemical Impregnation on the Mechanical and Physical Properties. Malaysian Polymer Journal, 2(2): 1-11.
[14] Li Y., Liu Z., Dong X., Fu Y. and Liu Y., 2013. Comparison of decay resistance of wood and wood polymer composite prepared by in- suit polymerization of monomers. International Biodeterioration & Biodegradation, 84:401-406.
[15] Rowell, R.M., Ibach, R.E., McSweeny, R.E. and Nilsson, T., 2009. Understanding decay resistance, dimensional stability and strength changes in heat treated and acetylated wood.Wood Material Science & Engineering, 1-2(4): 14-22.
[16] Baysal, E., Yalinkilic, M.K., Altinok M., Sonmez A., Peker H., and Colak M., 2007. Some physical, biological, mechanical, and fire properties of wood polymer composite (WPC) pretreated with boric acid and borax mixture. Construction and Building Materials, 21(9): 1879-1885.
[17] Mattos, B., Serrano, L., Gatto, D., Magalhaes, W.L.E., and Labidi, J., 2014. Thermochemical and hygroscopicity properties of pinewood treated by in situ copolymerisation with methacrylate monomers. Thermochimica Acta, 596: 70- 78