شناسایی اثر تیمار پلاسما بر قابلیت رنگ‌پذیری بافت نخل با نگرش کاربرد در صنعت مبلمان

نوع مقاله : مقاله پژوهشی

نویسندگان

1 هیئت علمی گروه علوم و صنایع چوب و کاغذ، دانشکده منابع طبیعی، دانشگاه تهران

2 دانشکده منابع طبیعی دانشگاه تهران

3 مهندسی منابع طبیعی- صنایع چوب، دانشکده مهندسی عمران، دانشگاه تربیت دبیر شهید رجایی تهران، ایران

چکیده

در این تحقیق تأثیر تیمار پلاسمای سرد بر روی قابلیت پوشش دهی بافت نخل در جهت الگوی برش پوست به مرکز تنه گرده­بینه مورد ارزیابی قرار گرفت. بدین منظور، تنه نخل خرما با میانگین قطر 60 سانتی‌متر انتخاب گردید و از ارتفاع برابرسینه گرده‌بینه‌ها دیسک‌های باضخامت 5 سانتی­متر تهیه گردید. سپس نمونه‌هایی سالم و بدون عیب به ابعاد 10×10 سانتی‌متر از سه‌نقطه دیسک: نزدیک پوست، میان‌پوست و مرکز تنه ونزدیک مرکز تنه تهیه گردید. پیش از انجام آزمون‌ها، سطح نمونه‌ها با سنباده پرداخت و سپس مشروط سازی انجام شد. پس از انجام تیمار پلاسمای سرد و سپس پوشش دهی بارنگ پایه آب آکریلیکی، آزمون­ زبری سطح، تر شوندگی و چسبندگی پوشش‌ بر روی نمونه‌ها انجام شد. بر اساس نتایج، بیشترین مقدار دانسیته پایه و کمترین مقدار زبری سطح نزدیک مرکز تنه مشاهده گردید. همچنین نتایج نشان داد، تیمار پلاسما سبب افزایش‌تر شوندگی سطح می­شود. با توجه به رابطه­ی معکوس بین زبری سطح و میزان چسبندگی، قبل و بعد از تیمار پلاسما بیشترین و کمترین مقدار چسبندگی کششی به ترتیب در نزدیک مرکز تنه و نزدیک پوست مشاهده شد. می­توان نتیجه­گیری نمود استفاده از تیمار پلاسما باعث بهبود قابلیت چسبندگی در سطح بافت نخل می­شود.

کلیدواژه‌ها


[1] Gholamiyan, H., 2019. The effect of alkyd coatings on the color changes and adhesion strength in parallel and perpendicular to fibers of date palm trees. Journal of Forest and Wood Products, 72: 67-76. (In Persian)
[2] Ramle, S.F.M., Sulaiman, O., Hashim, R., Arai, T. and Kosugi, A., 2015. Characterization of parenchyma and vascular bundle of oil palm trunk as function of storage time. Lignocellulose. ‎ 1: 33-44.
[3] Fathi, L., Bahmani, M., Saadatnia, M.A. and Poursartip, L., 2017. An investigation on anatomical and mechanical properties of vascular bundles in Date palm (Case Study: Ahvaz countryside). Iranian Journal of wood and paper industries, 8:109-118.
[5] Tufashi, T., 2013. Physical-mechanical and chemical properties of the wood of oil palm and date palm trees. Bachelor Thesis, Hamburg University, Department of Wood Science and Technology.
[6] Fathi, L., Frühwald, A. and Koch, G., 2014. Distribution of lignin in vascular bundles of coconut wood (Cocos nucifera) by cellular UV-spectroscopy and relationship between lignification and tensile strength in single vascular bundles. Holzforschung, 68: 915-925.
[7] Chahal, A. and Ciolkosz, D., 2019. A Review of Wood-Bark Adhesion: Methods and Mechanics of Debarking for Woody Biomass. Wood and Fiber Science, 51:288-299.
[8] Haase, J.G., Leung, L.H. and Evans, P.D., 2019. Plasma pre-treatments to improve the weather resistance of polyurethane coatings on black spruce wood. Coatings, 9: 14 pages.
[9] Blanchard, V. and Stirling, R., 2013. Plasma Pretreatment Enhances Field Performance of Exterior Wood Coatings. Wood and Fiber Science, 45:228-231.
[11] Blanchard, V., Blanchet, P. and Riedl, B., 2009. Surface energy modification by radiofrequency inductive and capacitive plasmas at low pressures on sugar maple: an exploratory study. Wood and Fiber Science, 41:245-254.
[12] Moghaddam, M.S., Heydari, G., Tuominen, M., Fielden, M., Haapanen, J., Mäkelä, J.M., Wålinder, M.E., Claesson, P.M. and Swerin, A., 2016. Hydrophobisation of wood surfaces by combining liquid flame spray (LFS) and plasma treatment: dynamic wetting properties. Holzforschung, 70: 527-537.
[13] Vitosytė, J., UKVALBERGIENĖ, K. and Keturakis, G., 2015. Wood surface roughness: an impact of wood species, grain direction and grit size. Materials Science, 21: 255-259.
[14] Avramidis, G., Klarhöfer, L., Maus-Friedrichs, W., Militz, H. and Viöl, W., 2012. Influence of air plasma treatment at atmospheric pressure on wood extractives. Polymer Degradation and Stability, 97: 469-471.
[15] JABLONSKÝ, M., ŠMATKO, L., Botkova, M., TIŇO, R. and ŠIMA, J., 2016. Modification of wood wettability (European beech) by diffuse coplanar surface barrier discharge plasma. surfaces, 28: 30 pages.
[16] Busnel, F., Blanchard, V., Prégent, J., Stafford, L., Riedl, B., Blanchet, P. and Sarkissian, A., 2010. Modification of sugar maple (Acer saccharum) and black spruce (Picea mariana) wood surfaces in a dielectric barrier discharge (DBD) at atmospheric pressure. Journal of Adhesion Science and Technology, 24:1401-1413.
[17] Acda, M.N., Devera, E.E., Cabangon, R.J. and Ramos, H.J., 2012. Effects of plasma modification on adhesion properties of wood. International journal of adhesion and adhesives, 32: 70-75.
[18] Back, E.L. and Danielsson, S., 1987. Oxidative activation of wood and paper surfaces for bonding and for paint adhesion. Nordic Pulp and Paper Research Journal, 2: 53-62.
[19] Lukowsky, D. and Horn, G., 2002, September. Pretreatments of wood to enhance the performance of outdoor coatings. In Macromolecular symposia. Wiley‐Vch Verlag. 187: 77-86.
[20] Söğütlü, C., Nzokou, P., Koc, I., Tutgun, R. and Döngel, N., 2016. The effects of surface roughness on varnish adhesion strength of wood materials. Journal of Coatings Technology and Research, 13: 863-870.
[21] Gholamiyan, H., 2020. Plasma Modification to Improve the Adhesion Resistance of the Wood Coating. Journal of Color Science and Technology, 14: 41-47 (In Persian).
[22] Gholamiyan, H., 2020. The possibility of designing and constructing standard tables and chairs with palm trunk. 4: 575-587. (In Persian)
[23] Asandulesa, M., Topala, I. and Dumitrascu, N., 2010. Effect of helium DBD plasma treatment on the surface of wood samples. Holzforschung, 64: 223-227.
[24] Nguyen, T.T., Ji, X., Van Nguyen, T.H. and Guo, M., 2017. Wettability modification of heat-treated wood (HTW) via cold atmospheric-pressure nitrogen plasma jet (APPJ). Holzforschung, 72: 37-43.
[25] Köhler, R., Sauerbier, P., Militz, H. and Viöl, W., 2017. Atmospheric pressure plasma coating of wood and MDF with polyester powder. Coatings, 7:171 pages.
[26]. Vidaurre, G.B., Vital, B.R., Oliveira, A.D.C., Oliveira, J.T.D.S., Moulin, J.C., Silva, J.G.M.D. and Soranso, D.R., 2018. Physical and mechanical properties of juvenile Schizolobium amazonicum wood. Revista Árvore, 42(1). 9 pages.
[27] Tarmian, A., Foroozan, Z., Sepehr, A., Gholamiyan, H. and Oladi, R., 2013. Physical and anatomical features and drying behavior of the boards produced from old date palm trees (Phoenix dactylifera L.) in Bam city. Iranian Journal of Wood and Paper Science Research, 28: 498-508.
[29] Cáceres, C.B., Hernández, R.E., Kuljich, S. and Koubaa, A., 2018. Effects of commercial thinning, log position in the stem, and cutting width on the surface quality of cants produced by a chipper-canter. Wood Material Science & Engineering, 13:28-35.
[30] de Cademartori, P.H.G., Nisgoski, S., Magalhães, W.L. and de Muniz, G.I.B., 2016. Surface wettability of Brazilian tropical wood flooring treated with He plasma. Maderas. Ciencia y tecnología, 18: 715-722.