ارزیابی ویژگی‌های ساختاری، فیزیکی و شیمیایی سلولز و نانو کریستال سلولز استخراج‌شده از ضایعات حاصل از هرس درخت خرما

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی دکتری- دانشگاهشهیدباهنرکرمان- دانشکده کشاورزی- بخش علوم خاک

2 عضو هیئت علمی دانشگاه باهنر کرمان- دانشکده کشاورزی-

3 عضو هیإت علمی دانشگاه تربیت مدرس

4 عضو هیئت علمیمرکز تحقیقات کشاورزی کرمان

5 استادیار دانشگاه تحصیلات تکمیلی صنعتی و فناوری پیشرفته

6 استاد گروه علوم خاک، دانشکده کشاورزی، دانشگاه شهید باهنر کرمان

چکیده

افزایش جمعیت سبب تولید مقادیر زیادی از ضایعات کشاورزی شده که سبب آلودگی محیط‌زیست می‌شوند. امروزه استفاده از ضایعات کشاورزی برای استخراج سلولز و نانو سلولز رو به افزایش می‌باشد. در این تحقیق سلولز و نانو کریستال سلولز از سه نوع ضایعات درخت خرما شامل پوشال، برگ سبز و خوشه خرما استخراج و برای شناسایی سلولزها و مقایسه با سلولز خالص شرکت سیگماآلدریچ از دستگاه­های FTIR، TGA و XRD استفاده شد. بازده استخراج سلولز برای پوشال 25 درصد، برگ سبز 20 درصد و خوشه خرما 33 اندازه‌گیری و پیک دستگاه­های FTIR و XRD نمونه­ها، مشابه با پیک سلولز خالص و درجه بلورینگی خوشه > پوشال > برگ خرما به دست آمد. کاهش وزن تمام نمونه­های سلولز در نمودارهای TGA در دمای 350 درجه سانتی‌گراد مشابه با نمودار TGA سلولز خالص بود. محدوده طول نانو ذرات این سلولزها توسط میکروسکوپ FE-SEM 19 تا 36 نانومتر مشخص شد.

کلیدواژه‌ها

موضوعات


[1] Sun, J. X., Sun, X. F., Zhao, H, and Sun, R. C., 2004.  Isolation and Characterization of Cellulose from Sugarcane Bagasse, Polym. Degrad. Stab. 84: 331–339.
[2] Copuer, Y., Guler, C., Akgul, M, and Tas_cıog˘lu, C., 2007. Some chemical properties of hazelnut husk and its suitability for particleboard production. Building and Environment 42 (7), 2568–2572.
[3] Syverud, K., Chinga-carrasco, G., Toledo, J, and Toledo, PG., 2011. A comparative study of Eucalyptus and Pinus radiata pulp fibres as raw materials for production of cellulose nanofibrils. Carbohydrate Polymers, 84: 1033–1038.
[4] Teixeira, E, D., Carolina, A, and Manzoli, A., 2010. Cellulose nanofibers from white and naturally colored cotton fibers. Cellulose, 17, 595- 606.
[5] Lavoine, N., Desloges, I., Dufresne, A., and Bras, J., 2012. Microfibrillated cellulose - its barrier properties and applications in cellulose materials a review. Carbohydrate Polymers. 90: 735-764.
[6] Frone, A. N., Panaitescu, D. M, and Donescu, D., 2011. Some aspects concerning the isolation of cellulose micro- and nano- fibers. U. P. B. Sci. Bull, 73(2): 1454-2331.
[7] Hadilam, M. M., Afra, E., Ghasemian, A, and Yousefi, H., 2014. Preparation and properties of ground cellulose nanofibers. J. Wood Forest Sci. Technol, 20: 2. 139-149. (In Persian).
[8] Mahseswari, U., Obi reddy, K., Muzenda, E., Guduri, B. R, and Varada Rajulu, A., 2012. Extraction and characterization of cellulose microfibrils from agricultural residue - Cocos nucifera L. Biomass and bioenergy, 46: 555-563.
[9] Dhar, N., 2010. “Novel Cellulose Nanoparticles for Potential Cosmetic and Pharmaceutical Applications”. Presented to the University of Waterloo in fulfilment of the thesis requirement for the degree of Master of Applied Science in Chemical Engineering.
[10] Zhang, G., Zhang, L., Deng, H, and Sun, P., 2011. Preparation and characterization of sodium carboxymethyl cellulose from cotton stalk using microwave heating. Society of Chemical Industry, 86,, 584-589.
[11] Kutsenko, L., Bochek, A., Vlasova, E, and Volchek, B., 2005. Synthesis of Carboxymethyl Cellulose Based on Short Fibers and Lignified Part of Flax Pedicels (Boon). Macromolecular Chemistry and Polymeric Materials, 12: 2045-2049.
[12] Pushpamalar, V., Langford, S., Ahmad, M, and Lim, Y., 2006. Optimization of reaction conditions for preparing carboxymethyl cellulose from sago waste. Carbohydrate Polymers, 64: 312-318.
[13] Adinugraha, M. Djagal, M, and Haryadi, N., 2005. Synthesis and characterization of sodium carboxymethylcellulose from cavendish banana pseudo stem (Musa cavendishii LAMBERT). Carbohydrate Polymers, 62: 164-169.
[14] Sun, R, and Tomkinson, J., 2010. Separation and Characterization of Cellulose from Wheat Straw. Separation Science and Technology, 39: 391–411.
[15] Siqueira, G., Bras, J, and Dufresne, A., 2010. Cellulosic Bionanocomposites: A Review of Preparation: Properties and Applications. Polymers, 2: 728-765.
[16] Klemm, D., Krame, F., Moritz, S., Lindstrom, T., Ankerfors, M., Gray, D, and Dorris, A., 2011. A New Family OF Nature-Based Materials. Angewandte Chemie, Vol.50, pp.5438-5466.
[17] Hiasa, S., Iwamoto, S., Endo, T. and Edashige, Y., 2014. Isolation of cellulose nanofibrils from mandarin (Citrus unshiu) peel waste. Industrial Crops and Products, 62: 280-285.
[18] Wenshuai, C., Haipeng, Y., YixingL., Peng, C., Mingxin, Z. and Yunfei, H., 2011. Individualization of cellulose nanofibers from wood using high-intensity ultrasonication combined with chemical pretreatments. Carbohydrate Polymers, 83: 1804-1811.
[19] Xhanari, K., Syverud, K., Chinga-Carrasco, G., Paso, K. and Stenius, P., 2010. Reduction of water wettability of nanofibrillated cellulose by adsorption of cationic surfactants. Cellulose, 18(2): 257–270.
[20] Chiraiyl, C, J., Mathew, L. and Thomas. S., 2014. Review of recent research in nano cellulose preparation from different lignocellulosic fibers, 37: 20-28.
[21] Sonkaria, S., Ahn, SH. and Khare, V., 2012. Nanotechnology and its impact on food and nutrition: a review. Recent Pat Food Nutr Agriculture, 4: 8–18.
[22] Forsberg, EM. And de, Lauwere C., 2013. Integration needs in assessments of nano-technology in food and agriculture. Etikki Praksis, 1: 38–54.
[23] Rosa, M. J., Medeiros, E. S., Malmong, J.A., Gregorski, K. S., Wood, D. F., Mattoso, L. H. C., Orts, W. J. and Imam, S. H., 2010. Cellulose nanowhiskers from coconut husk fibers: effect of preparation condition on their thermal and morphological behavior. Carbohydrate polymers, 81(1):83-92.
[24] Agriculture--Economic aspects--Iran—Statistics. 2018. ISBN: 978 - 964 - 467 - 084 – 8. (In Persian).
[25] Kummu, M., De Moel, H., Porkka, M., Siebert, S., Varis, O. and Ward, P. J., 2011. Lost food, wasted resources: Global food supply chain losses and their impacts on freshwater, cropland, and fertiliser use. Science of the Total Environment, 438, 477-489.
[26] Turbek, A. F., Snyder, F.W. and Sandberg, K. R., 2011. Microfibrillated cellulose, a new cellulose product: Properties, uses and commercial potential. Applied Polymer Symposia, Vol.37, pp.815-827.
[27] Segal, L., Creely, J., Martin, J. A. and Conrad, M., 1959. An empirical method for estimating the degree of crystallinity of native cellulose using the X-ray diffractometer. Text. Res. J, 29, 786–794.
 [28] Zain, N. M.; Yusop, S. M. and Ahmad, I., 2014. Preparation and characterization of cellulose and nanocellulose from pomelo (Citrus grandis) albedo. J. Nutrit. Food. Sci, 5(1):334.
[29] Mandal, A. and Chakrabarty, D., 2011. Isolation of Nanocellulose from Waste Sugarcane Bagasse (SCB) and its Characterization. Carbohydr. Polym, 86(3): 1291-1299.
[30] Castro, G. R., Alcântara, I. L., Roldan, P., Bozano, D., Padilha, M., Florentino, O. and Rocha, J.C., 2004. Synthesis, Characterization and Determination of the Metal Ions Adsorption Capacity of Cellulose Modified with p-Aminobenzoic Groups, Mater. Res, 7(2): 329-334.
[31] Golestanifard, F., Bahrehvar, M. A. and Salahi, E., 2017. Methods of Identification and Analysis of Materials. Iran University of Science & Technology press, 380p. (In Persian)
[32] Li, R., Fei, J., Cai, Y., Li, Y., Feng,j. and Yao, J., 2009. Cellulose whiskers extracted from mulberry-A novel biomass production, Carbohydrate Polymers 76:94-99.
[33] Reitzer, R., 2007. Technology roadmap. Application of nanotechnology in the paper industry. The perspective of the nanoscience center, Market analysis and industrial needs, 75p.
[34] Chen,W., Yu, H., Liu,Y., Hai,Y., Zjang, M. and Chen, P., 2011. Isolation and characterization of cellulose nanofibers from four plant cellulose fibers using a chemical-ultrasonic process. Cellulose, 18:433-442.
[35] Jonoobi, M., harun, J., Tahir, P., Zaini, L., Saifulazry, S. and Davoodi, M. M., 2010. Characteristics of nanofibers extracted from kenaf core. Bioresources, 5(4):2556-2566.
[36] kumar, S., Upadahyaya, J. S and Negi,Y.S., 2010. Preparation of nano particles from corn cobs by chemical treatment methods. Bioresources, 5(2):1292-1300pp.
[37] Rahimi., M. and Behrooz, R.,  2011. 'Effect of Cellulose Characteristic and Hydrolyze Conditions on Morphology and Size of Nanocrystal Cellulose Extracted from Wheat Straw', International Journal of Polymeric Materials, 60: 8, 529 — 541.
[38] Noorani, S., Simonsen, J. and Atre, S., 2009.  Nano-enabled microtechnology. Pplysulfone nanocomposites incorporating cellulose nanocrystales. Cellulse. 14: 577-584.
[39] Moon, R. J., Martini, A., Nairn, J., Simonsen, J. and Youngblood, J., 2011. Cellulose nanomaterials review: structure, properties and nanocomposites. Chemical Society Reviews, 40: 3941-3994.
[40] Lu,  Z. X., Huang, Y. F., Zhang, L. M., Xia, K., Deng, Y. and He, N. Y., 2015 Preparation of gold nanorods using1,2,4-Trihydroxybenzene as a reducing agent. J. Nanosci. Nanotechno. 2015, 15 (8), 6230-6235.
 [41] Yegane, F., Behruz.R., Bahramifar, N., 2010. Compared to produce nano-crystalline cellulose from waste of white office paper with sulfuric acid and maleic acid treatment. M.Sc thesis, the university of Natural Resources and Marine Sciences of Tarbiat Modarres. 70 p.
[42] Souza, A.G., Kano, F.S., Bonvent, J. J. and Rosa, D., 2017. Cellulose nanostructures obtained from waste paper industry: A comparison of acid and mechanical isolation methods. Materials research. DOI: http://dx.doi.org/10.1590/1980-5373-MR-2016-0863.
[43] Danial, W. H., Majid, Z. A. and Muhid, M. N. M. Triwahyono, S., Bakar, M.B., and Ramli, Z., 2015 the reuse of wastepaper for the extraction of cellulose nanocrystals. Carbohydrate Polymer, 118: 165-169.