خواص وکاربردهای نانو کریستال های سلولز

نوع مقاله : مقاله پژوهشی

نویسندگان

1 استادیار چندسازه چوب،‌ گروه علوم و صنایع چوب و کاغذ، دانشکده منابع طبیعی، دانشگاه تهران

2 دانشجوی دکتری فرآورده‌های چندسازه چوب،‌ گروه علوم و صنایع چوب و کاغذ، دانشکده منابع طبیعی، دانشگاه تهران

3 دانش‌آموخته دکتری، گروه علوم و صنایع غذایی، دانشکده کشاورزی، دانشگاه صنعتی اصفهان

چکیده

در این مقاله، مروری بر تحقیقات اخیر صورت گرفته در زمینه تولید نانوذرات سلولز از منابع مختلف انجام شده است. این امر بر اساس فراوانی، تجدید‌پذیری، سختی و مقاومت بالا، سازگاری با محیط زیست و وزن پایین مواد مذکور صورت پذیرفته، بر مطالعات متعدد انجام شده در زمینه جداسازی نانوسلولز از منابع سلولزی مختلف استناد شده و استفاده از نانو ذرات سلولز در تولید مواد جدید با کاربردهای فراوان نیز مورد توجه قرار گرفته است. در این تحقیق علاوه بر ارائه مقدمهای از خواص نانوسلولز، به بررسی روش‌های متفاوت جداسازی نانوکریستالها (از مشتقات نانو سلولز) از انواع مواد اولیه نیز پرداخته شده است. نانوکریستال‌های سلولزی میله مانند (NC) را می‌توان با استفاده از فرایند هیدرولیز اسیدی از موادی همانند چوب، گیاهان فیبری حاصل از پسماندهای صنعتی و کشاورزی و سلولز باکتریایی استخراج کرد. در کل می‌توان گفت که تمرکز این تحقیق بر روی روشهای مختلف مشخصهیابی، شناخت خواص و ساختار مواد و ویژگیهای جامع نانوکریستال‌های بدست آمده از منابع مختلف بر اساس استناد به تحقیقات انجام گرفته در این زمینه می‌باشد. این مطالعه بحث جامعی در خصوص استخراج نانو سلولز از منابع اولیه مختلف و پتانسیل نانوذرات سلولزی برای استفاده در طیف گسترده‌ای از برنامه‌های کاربردی با تکنولوژی متفاوت ارائه می دهد.

کلیدواژه‌ها

موضوعات


[1]       Kamel, S., 2007. Nanotechnology and its applications in lignocellulosic composites, a mini review. Express Polymer Letters, 1(9): 546-575.
[2]       Jonoobi, M., Harun, J., Mathew, A.P., Hussein, M.Z.B. and Oksman, K., 2010. Preparation of cellulose nanofibers with hydrophobic surface characteristics. Cellulose, 17(2): 299-307.
[3]       Jonoobi, M., Mathew, A.P., Abdi, M.M., Davoodi Makinejad, M. and Oksman, K., 2012. A comparison of modified and unmodified cellulose nanofiber reinforced polylactic acid (PLA) prepared by twin screw extrusion, Journal of Polymer Environment, 20(4): 991-997.
[4]       Jonoobi, M., Mathew, A.P. and Oksman, K., 2009. Produsing low-cost cellulose nanofiber from sludge as new source of raw materials. Industrial Crop and Products, 40)1): 232-238.
[5]       Wegner, T.H. and Jones, P.E., 2006. Advancing cellulose-based nanotechnology. Cellulose, 13(2): 115-118.
[6]       Wang, B., Sain M. and Oksman, K., 2007. Study of structural morphology of hemp fiber from the micro to the nanoscale. Applied Composite Materials, 14(2): 89-103.
[7]       Habibi, Y., Lucia, L.A. and Rojas, O.J., 2010. Cellulose nanocrystals: Chemistry, self-assembly, and applications Chemical Reviews, 110(6): 3479-3500.
[8]       Leung, C.W., Luong, J.H.T., Hrapovic, S., Lam, E., Liu, Y., Male, K.B., Mahmoud, K. and Rho, D., 2012. Cellulose nanocrystals from renewable biomass. G. patents, Editor.
[9]       Siró, I. and Plackett, D., 2010. Microfibrillated cellulose and new nanocomposite materials: A review. Cellulose, 17(3): 459-494.
[10]   Habibi, Y., 2014. Key advances in the chemical modification of nanocelluloses. Chemical Society Reviews, 43(5): 1519-1542.
[11]   Siqueira, G., Bras, J. and Dufresne, A., 2010a. Cellulosic bionanocomposites: A review of preparation, properties and applications. Polymers, 2(4): 728-765.Özgür Seydibeyoğllu, M. and Oksman, K., 2008. Novel nanocomposites based on polyurethane and micro fibrillated cellulose Composites Science and Technology, 68(3-4): 908-914.
[12]    Zimmermann, T., Pöhler, E. and Schwaller, P., 2005. Mechanical and morphological properties of cellulose fibril reinforced nanocomposites. Advanced Engineering Materials, 7(12): 1156-1161.
[13]   Taniguchi, T. and Okamura, K., 1998. New films produced from microfibrillated natural fibres. Polymer International, 47(3): 291-294.
[14]   Oksman, K., Mathew, A.P., Bondeson, D. and Kvien, I., 2006. Manufacturing process of cellulose whiskers/polylactic acid nanocomposites. Composites Science and Technology, 66(15): 2776-2784.
[15]   Nakagaito, A.N., Iwamoto, S. and Yano, H., 2005. Bacterial cellulose: The ultimate nano-scalar cellulose morphology for the production of high-strength composite. Applied Physics A: Materials Science and Processing, 80(1): 93-97.
[16]   Hubbe, M.A., Rojas, O.J., Lucia, L.A. and Sain, M., 2008. Cellulosic nanocomposites: a review. Bioresource, 3(3):  929-980.
[17]   Alemdar, A. and Sain, M., 2008. Biocomposites from wheat straw nanofibers: morphology, thermal and mechanical properties. Composites Science and Technology, 68(2): 557-565.
[18]   Alemdar, A., Oksman, K. and Sain, M., 2009. The effect of decreased fiber size in wheat straw/polyvinyl alcohol composites. Journal of Biobased Materials and Bioenergy, 3(1): 75-80.
[19]   Jonoobi, M., Harun, J., Tahir, P.M., Shakeri, A., Saifulazry, S. and Makinejad, M.D., 2011. Physicochemical characterization of pulp and nanofibers from kenaf stem. Materials Letters, 65(7): 1098-1100.
[20]   Panshin, A.J. and de Zeeuw, C., 1970. Textbook of wood technology: structure, identification, properties, and uses of the commercial woods of the United States and Canada, Mcgraw-Hill College, New York.
[21]   Azizi Samir, M.A.S., Alloin, F. and Dufresne, A., 2005. Review of recent research into cellulosic whiskers, their properties and their application in nanocomposite field. Biomacromolecules, 6(2): 612-626.
[22]   Nickerson, R.F. and Habrle, J.A., 1947. Cellulose Intercrystalline Structure. Industrial and Engineering Chemistry, 39(11): 1507-1512.
[23]   Satyamurthy, P., Jain, P., Balasubramanya, R.H. and Vigneshwaran, N., 2011. Preparation and characterization of cellulose nanowhiskers from cotton fibres by controlled microbial hydrolysis. Carbohydrate Polymers, 83(1): 122-129.
[24]   Liu, L. and Yao, J., 2012. Properties of biocomposite fibers from cellulose nanowhiskers and cellulose matrix. Journal of Fiber Bioengineering and Informatics, 5(2): 207-215.
[25]   Turbak, A.F., Snyder, F.W. and Sandberg, K.R., 1983. Microfibrillated cellulose, a new cellulose product: properties, uses, and commercial potential. Proceedings of the Ninth Cellulose Conference, ed. A. Sarko, Applied Polymer Symposia, 37, New York City, Wiley.
[26]   Herrick, F.W., Casebier, R.L., Hamilton, J.K. and Sandberg, K.R., 1983. Microfibrillated cellulose: morphology and accessibility. Journal of applied polymer science. Applied polymer symposium, 37: 797-813.
[27]   Beck-Candanedo, S., Roman, M. and Gray, D.G., 2005. Effect of reaction conditions on the properties and behavior of wood cellulose nanocrystal suspensions. Biomacromolecules, 6(2): 1048-1054.
[28]   Morelli, C.L., Marconcini, J.M., Pereira, F.V., Bretas, R.E.S. and Branciforti, M.C., 2012. Extraction and characterization of cellulose nanowhiskers from balsa wood. Macromolecular Symposia, 319(1): 191-195.
[29]   Shi, J., Shi, S.Q., Barnes, H.M. and Pittman, C.U., 2011. A chemical process for preparing cellulosic fibers hierarchically from kenaf bast fibers. BioResources, 6(1): 879-890.
[30]   Kargarzadeh, H., Ahmad, I., Abdullah, I., Dufresne, A., Zainudin, S.Y. and Sheltami, R.M., 2012. Effects of hydrolysis conditions on the morphology, crystallinity, and thermal stability of cellulose nanocrystals extracted from kenaf bast fibers. Cellulose, 19(3): 855-866.
[31]   Fahma, F., Iwamoto, S., Hori, N., Iwata, T. and Takemura, A., 2011. Effect of pre-acid-hydrolysis treatment on morphology and properties of cellulose nanowhiskers from coconut husk. Cellulose, 18(2): 443-450.
[32]   Rosa, M.F., Medeiros, E.S., Malmonge, J.A., Gregorski, K.S., Wood, D.F., Mattoso, L.H.C., Glenn, G., Orts, W.J. and Imam, S.H., 2010. Cellulose nanowhiskers from coconut husk fibers: Effect of preparation conditions on their thermal and morphological behavior. Carbohydrate Polymers, 81(1): 83-92.
[33]   Pandey, J.K., Lee, J.W., Chu, W.S., Kimm C.S., Ahn, S.H. and Lee, C.S., 2008. Cellulose nano whiskers from grass of Korea. Macromolecular Research, 16(5): 396-398.
[34]   Nguyen, H.D., Mai, T.T.T., Nguyen, N.B., Dang, T.D., Le, M.L.P., Dang, T.T. and Tran, V.M., 2013. A novel method for preparing microfibrillated cellulose from bamboo fibers. Advances in Natural Sciences: Nanoscience and Nanotechnology, 4(1): 015-016.
[35]   Zhang, Y., Lu, X.B., Gao, C., Lv, W.J. and Yao, J.M., 2012b. Preparation and characterization of nano crystalline cellulose from Bamboo fibers by controlled cellulase hydrolysis. Journal of Fiber Bioengineering and Informatics, 5(3): 263-271.
[36]   Lu, P. and Hsieh, Y.L., 2012. Preparation and characterization of cellulose nanocrystals from rice straw. Carbohydrate Polymers, 87(1): 564-573.
[37]   Chen, Y., Liu, C., Chang, P.R., Cao, X. and Anderson, D.P., 2009. Bionanocomposites based on pea starch and cellulose nanowhiskers hydrolyzed from pea hull fibre: effect of hydrolysis time. Carbohydrate Polymers, 76(4): 607-615.
[38]   Ludueña, L.N., Vecchio, A., Stefani, P.M. and Alvarez, V.A., 2013. Extraction of cellulose nanowhiskers from natural fibers and agricultural byproducts. Fibers and Polymers, 14(7): 1118-1127.
[39]   Herrera, M.A., Mathew, A.P., and Oksman, K., 2012. Comparison of cellulose nanowhiskers extracted from industrial bio-residue and commercial microcrystalline cellulose. Material Letters, 71: 28-31.
[40]   Ni, H., Zeng, S., Wu, J., Cheng, X., Luo, T., Wang, W., Zeng, W. and Chen, Y., 2012. Cellulose nanowhiskers: Preparation, characterization and cytotoxicity evaluation. Bio-Medical Materials and Engineering, 22(1-3): 121-127.
[41]   Mao, J., Osorio-Madrazo, A. and Laborie, M.P., 2013. Preparation of cellulose I nanowhiskers with a mildly acidic aqueous ionic liquid: Reaction efficiency and whiskers attributes. Cellulose, 20(4): 1829-1840.
[42]   El-Saied, H., Basta, A.H. and Gobran, R.H., 2004. Research progress in friendly environmental technology for the production of cellulose products (Bacterial cellulose and its application). Polymer-Plastics Technology and Engineering, 43(3): 797-820.
[43]   Czaja, W.K., Young, D.J., Kawecki, M., Brown R.M. J.r., 2007. The future prospects of microbial cellulose in biomedical applications. Biomacromolecules, 8(1): 1-12.
[44]   Nishiyama, Y., Sugiyama, J., Chanzy, H. and Langan, P., 2003. Crystal Structure and Hydrogen Bonding System in Cellulose Iα from Synchrotron X-ray and Neutron Fiber Diffraction. Journal of the American Chemical Society, 125(47): 14300-14306.
[45]   Schroers, M., Kokil, A. and Weder, C., 2004. Solid polymer electrolytes based on nanocomposites of ethylene oxide-epichlorohydrin copolymers and cellulose whiskers. Journal of Applied Polymer Science, 93(6): 2883-2888.
[46]   Zhang, D., Zhang, Q., Gao, X. and Piao, G., 2013. A nanocellulose polypyrrole composite based on tunicate cellulose. International Journal of Polymer Science, 2013(1): 1-6
[47]   Rusli, R., Shanmuganathan, K., Rowan, S.J., Weder, C. and Eichhorn, S.J., 2011. Stress transfer in cellulose nanowhisker composites - Influence of whisker aspect ratio and surface charge. Biomacromolecules, 12(4): 1363-1369.
[48]   Khandelwal, M. and Windle, A.H., 2013. Self-assembly of bacterial and tunicate cellulose nanowhiskers. Polymer (United Kingdom), 54(19): 5199-5206.
[49]   van der Berg, O., Capadona, J.R. and Weder, C., 2007. Preparation of homogeneous dispersions of tunicate cellulose whiskers in organic solvents. Biomacromolecules, 8(4): 1353-1357.
[50]   Iwamoto, S., Kai, W., Isogai, A. and Iwata, T., 2009. Elastic modulus of single cellulose microfibrils from tunicate measured by atomic force microscopy. Biomacromolecules, 10(9): 2571-2576.
[51]   Camarero Espinosa, S., Kuhnt, T., Foster, E.J. and Weder, C., 2013. Isolation of thermally stable cellulose nanocrystals by phosphoric acid hydrolysis. Biomacromolecules, 14(4): 1223-1230.
[52]   Lee, S.Y., Mohan, D.J., Kang, I.A., Doh, G.H., Lee, S. and Han, S.O., 2009. Nanocellulose reinforced PVA composite films: Effects of acid treatment and filler loading. Fibers and Polymers, 10(1): 77-82.
[53]   Bondeson, D., Mathew, A. and Oksman, K., 2006. Optimization of the isolation of nanocrystals from microcrystalline cellulose by acid hydrolysis. Cellulose, 13(2): 171-180.
[54]   Habibi, Y. and Vignon, M.R., 2008. Optimization of cellouronic acid synthesis by TEMPO-mediated oxidation of cellulose III from sugar beet pulp. Cellulose, 15(1): 177-185.
[55]   Oksman, K., Etang, J.A., Mathew, A.P. and Jonoobi, M., 2011. Cellulose nanowhiskers separated from a bio-residue from wood bioethanol production. Biomass Bioenergy, 35(1): 146-152.
[56]   Pandey, J.K., Kim, C.S., Chu, W.S., Lee, C.S., Jang, D.Y. and Ahn, S.H., 2009. Evaluation of morphological architecture of cellulose chains in grass during conversion from macro to nano dimensions. E-Polymer, 9(1): 1221-1235.
[57]   Rosa, S.M.L., Rehman, N., De Miranda, M.I.G., Nachtigall, S.M.B. and Bica, C.I.D., 2012. Chlorine-free extraction of cellulose from rice husk and whisker isolation. Carbohydrate Polymers, 87(2): 1131-1138.
[58]   Paralikar, S.A., Simonsen, J. and Lombardi, J., 2008. Poly(vinyl alcohol)/cellulose nanocrystal barrier membranes. Journal of Membrane Science, 320(1-2): 248-258.
[59]   Grunert, M. and Winter, W.T., 2002. Nanocomposites of cellulose acetate butyrate reinforced with cellulose nanocrystals. Journal of Polymers and the Environment, 10(1-2): 27-30.
[60]   Morandi, G., Heath, L. and Thielemans, W., 2009. Cellulose nanocrystals grafted with polystyrene chains through Surface-Initiated Atom Transfer Radical Polymerization (SI-ATRP). Langmuir, 25(14): 8280-8286.
[61]   Tonoli, G.H.D., Teixeira, E.M., Corrêa, A.C., Marconcini, J.M., Caixeta, L.A., Pereira-Da-Silva, M.A. and  Mattoso, L.H.C., 2012. Cellulose micro/nanofibres from Eucalyptus kraft pulp: Preparation and properties. Carbohydrate Polymers, 89(1): 80-88.
[62]   Braun, B., Dorgan, J.R. and Chandler, J.P., 2008. Cellulosic nanowhiskers. Theory and application of light scattering from polydisperse spheroids in the Rayleigh-Gans-Debye regime. Biomacromolecules, 9(4): 1255-1263.
[63]   Flauzino Neto, W.P., Silvério, H.A., Dantas, N.O. and Pasquini, D., 2013. Extraction and characterization of cellulose nanocrystals from agro-industrial residue - Soy hulls. Industrial Crops and Products, 42: 480-488.
[64]   Sheltami, R.M., Abdullah, I., Ahmad, I., Dufresne, A. and Kargarzadeh, H., 2012. Extraction of cellulose nanocrystals from mengkuang leaves (Pandanus tectorius). Carbohydrate Polymers, 88(2): 772-779.
[65]   de Morais Teixeira, E., Bondancia, T.J., Teodoro, K.B.R., Corrêa, A.C., Marconcini, J.M. and Mattoso, L.H.C., 2011. Sugarcane bagasse whiskers: Extraction and characterizations. Industrial Crops and Products, 33(1): 63-66.
[66]   Imai, T., Putaux, J.L. and Sugiyama, J., 2003. Geometric phase analysis of lattice images from algal cellulose microfibrils. Polymer, 44(6): 1871-1879.
[67]   Li, R., Fei, J., Cai, Y., Li, Y., Feng, J. and Yao, J., 2009. Cellulose whiskers extracted from mulberry: A novel biomass production. Carbohydrate Polymers, 76(1): 94-99.
[68]   Cherian, B.M., Leão, A.L., de Souza, S.F., Thomas, S., Pothan, L.A. and Kottaisamy, M., 2010. Isolation of nanocellulose from pineapple leaf fibres by steam explosion. Carbohydrate Polymers, 81(3): 720-725.
[69]   Purkait, B.S., Ray, D., Sengupta, S., Kar T., Mohanty, A. and Misra, M., 2011. Isolation of cellulose nanoparticles from sesame husk. Industrial and Engineering Chemistry Research, 50(2): 871-876.
[70]   Morán, J.I., Alvarez, V.A., Cyras, V.P. and Vázquez, A., 2008. Extraction of cellulose and preparation of nanocellulose from sisal fibers. Cellulose, 15(1): 149-159.
[71]   Brito, B.S.L., Pereira, F.V., Putaux, J.L. and Jean, B., 2012. Preparation, morphology and structure of cellulose nanocrystals from bamboo fibers. Cellulose, 19(5): 1527-1536.
[72]   de Morais Teixeira, E., Corrêa, A.C., Manzoli, A., de Lima Leite, F., de Ribeiro Oliveira, C. and Mattoso, L.H.C., 2010. Cellulose nanofibers from white and naturally colored cotton fibers. Cellulose, 17(3): 595-606.
[73]   Favier, V., Chanzy, H. and Cavaille, J.Y., 1995. Polymer nanocomposites reinforced by cellulose whiskers. Macromolecules, 28(18): 6365-6367.
[74]   Salajková, M., Berglund, L. and Zhou, Q., 2012. Hydrophobic cellulose nanocrystals modified with quaternary ammonium salts. Journal of Materials Chemistry, 22(37): 19798-19805.
[75]   Corrêa, A.C., de Teixeira, E.M., Pessan, L.A., Mattoso, L.H.C., 2010. Cellulose nanofibers from curaua fibers. Cellulose, 17(6): 1183-1192.
[76]   Elazzouzi-Hafraoui, S., Nishiyama, Y., Putaux, J.L., Heux, L., Dubreuil, F. and Rochas, C., 2008. The shape and size distribution of crystalline nanoparticles prepared by acid hydrolysis of native cellulose. Biomacromolecules, 9(1): 57-65.
[77]   Morais, J.P.S., Rosa, M.D.F., De Souza Filho, M.D.S.M., Nascimento, L.D., Do Nascimento, D.M. and Cassales, A.R., 2013. Extraction and characterization of nanocellulose structures from raw cotton linter. Carbohydrate Polymers, 91(1): 229-235.
[78]   Zaini, L.H., Jonoobi, M., Tahir, P.M. and Karimi, S., 2013. Isolation and Characterization of Cellulose Whiskers from Kenaf (Hibiscus cannabinus L.) Bast Fibers. Journal of Biomaterials and Nanobiotechnology, 4(1): 37-44.
[79]   Cao, X., Ding, B., Yu, J. and Al-Deyab, S.S., 2012. Cellulose nanowhiskers extracted from TEMPO-oxidized jute fibers. Carbohydrate Polymers, 90(2): 1075-1080.
[80]   Ciolacu, D., Ciolacu, F. and Popa, V.I., 2011. Amorphous cellulose - Structure and characterization. Cellulose Chemistry and Technology, 45(1-2): 13-21.
[81]   Parikh, D.V., Thibodeaux, D.P. and Condon, B., 2007. X-ray crystallinity of bleached and crosslinked cottons. Textile Research Journal, 77(8): 612-616.
[82]   Li, Q., Zhou, J. and Zhang, L., 2009. Structure and properties of the nanocomposite films of chitosan reinforced with cellulose whiskers. Journal of Polymer Science Part B: Polymer Physics, 47: 1069-1077.
[83]   Abraham, E., Deepa, B., Pothan, L.A., Jacob, M., Thomas, S., Cvelbar, U. and Anandjiwala, R., 2011. Extraction of nanocellulose fibrils from lignocellulosic fibres: A novel approach. Carbohydrate Polymers, 86(4): 1468-1475.
[84]   Johar, N., Ahmad, I. and Dufresne, A., 2012. Extraction, preparation and characterization of cellulose fibres and nanocrystals from rice husk. Industrial Crops and Products, 37(1): 93-99.
[85]   Rahimi, M. and Behrooz, R., 2011. Effect of cellulose characteristic and hydrolyze conditions on morphology and size of nanocrystal cellulose extracted from wheat straw. International Journal of Polymeric Materials and Polymeric Biomaterials, 60(8): 529-541.
[86]   Tobyn, M.J., McCarthy, G.P., Staniforth, J.N. and Edge, S., 1998. Physicochemical comparison between microcrystalline cellulose and silicified microcrystalline cellulose. International Journal of Pharmaceutics, 169(2): 183-194.
[87]   Ludueña, L.N., Vecchio, A., Stefani, P.M. and Alvarez, V.A., 2013. Extraction of cellulose nanowhiskers from natural fibers and agricultural byproducts. Fibers and Polymers, 14(7): 1118-1127.
[88]   Siqueira, G., Bras, J. and Dufresne, A., 2010b. Luffa cylindrica as a lignocellulosic source of fiber, microfibrillated cellulose, and cellulose nanocrystals. BioResources, 5(2): 727-740.
[89]   Hajaligol, M., Waymack, B. and Kellogg, D., 2001. Low temperature formation of aromatic hydrocarbon from pyrolysis of cellulosic materials. Fuel, 80(12): 1799-1807.
[90]   Lee, H.L., Chen, G.C. and Rowell, R.M., 2004. Thermal properties of wood reacted with a phosphorus pentoxide-amine system. Journal of Applied Polymer Science, 91(4): 2465-2481.
[91]   Fortunati, E., Puglia, D., Monti, M., Peponi, L., Santulli, C., Kenny, J.M. and Torre, L., 2013. Extraction of Cellulose Nanocrystals from Phormium tenax Fibres. Journal of Polymers and the Environment, 21(2): 319-328.
[92]   Iwatake, A., Nogi, M. and Yano, H., 2008. Cellulose nanofiber-reinforced polylactic acid. Composites Science and Technology, 68(9): 2103-2106.
[93]   de Azeredo, H.M.C., 2009. Review Nanocomposites for food packaging applications. Food Research International, 42: 1240-1253.
[94]   Rafieian, F., M. Shahedi, J., Keramat, J. and Simonsen, J., 2014. Thermomechanical and morphological properties of nanocomposite films from wheat gluten matrix and cellulose nanofibrils. Journal of food Science, 9(1): 79100-107.
[95]   Cao, X., Chen, Y., Chang, P.R., Muir, A.D. and Falk, G., 2008. Starch-based nanocomposites reinforced with flax cellulose nanocrystals. eXPRESS Polymer Letters, 2(7): 502-510.
[96]   Qi, H., Cai, J., Zhang, L. and Kuga, S., 2009. Properties of Films Composed of Cellulose Nanowhiskers and a Cellulose Matrix Regenerated from Alkali/Urea Solution. Biomacromolecules, 10(6): 1597-1602.
[97]   George, J., Ramana, K.V. and Bawa, A.S., 2011. Bacterial cellulose nanocrystals exhibiting high thermal stability and their polymer nanocomposites. International Journal of Biological Macromolecules, 48(1): 50-57.
[98]   Silvério, H.A., Flauzino Neto, W.P. and Pasquini, D., 2013. Effect of incorporating cellulose nanocrystals from corncob on the tensile, thermal and barrier properties of poly(vinyl alcohol) nanocomposites. Journal of Nanomaterials, 9(1): 6-15
[99]   Abdollahi, M., Alboofetileh, M., Behrooz, R., Rezaei, M. and Miraki, R., 2013. Reducing water sensitivity of alginate bio-nanocomposite film using cellulose nanoparticles. International Journal of Biological Macromolecules, 54: 166-173.
[100]          George, J., 2012. High performance edible nanocomposite films containing bacterial cellulose nanocrystals. Carbohydrate Polymers, 87(3): 2031-2037.
[101]          Cho, M.J. and Park, B.D., 2011. Tensile and thermal properties of nanocellulose-reinforced poly(vinyl alcohol) nanocomposites. Journal of Industrial and Engineering Chemistry, 17(1): 36-40.
[102]          Rafieian, F., Shahedi, M., Keramat, J. and Simonsen, J., 2014. Mechanical, thermal and barrier properties of nano-biocomposite based on gluten and carboxylated cellulose nanocrystals. Industrial Crops and Products, 53(1): 282-288.
[103]          Rafieian, F. and Simonsen, J., 2014a. Fabrication and characterization of carboxylated cellulose nanocrystals reinforced glutenin nanocomposite. Cellulose, 21(6): 4167-4180.
[104]          Rafieian, F. and Simonsen, J., 2014b. The effect of carboxylated nanocrystalline cellulose on the thermomechanical and barrier properties of cysteine cross linked gliadin nanocomposite. Cellulose, 22(2): 1175-1188.
[105]          Bhatnagar, A. and Sain, M., 2005. Processing of cellulose nanofiber-reinforced composites. Journal of Reinforced Plastics and Composites, 24(12): 1259-1268.
[106]          Wu, Q., Henriksson, M., Liu, X. and Berglund, L.A., 2007. A high strength nanocomposite based on microcrystalline cellulose and polyurethane. Biomacromolecules, 8(12): 3687-3692.
[107]          Bras, J., Hassan, M.L., Bruzessea, C., Hassan, E.A., El-Wakil, N.A. and Dufresne, A., 2010. Mechanical, barrier, and biodegradability properties of bagasse cellulose whiskers reinforced natural rubber nanocomposites. Industrial Crops and Products, 32(3): 627-633.
[108]          Pasquini, D., de Morais Teixeira, E., Curvelo da Silva, A.A., Belgacem, M.N. and Dufresne, A., 2010. Extraction of cellulose whiskers from cassava bagasse and their applications as reinforcing agent in natural rubber. Industrial Crops and Products, 32(3): 486-490.
[109]          Dong, H., Strawhecker, K.E., Snyder, J.F., Orlicki, J.A., Reiner, R.S. and Rudie, A.W., 2012. Cellulose nanocrystals as a reinforcing material for electrospun poly(methyl methacrylate) fibers: Formation, properties and nanomechanical characterization. Carbohydrate Polymers, 87: 2488- 2495.
[110]          Lima, M.M.D. and Borsali, R., 2004. Rodlike cellulose microcrystals: structure, properties, and applications. Macromolecular Rapid Communications, 25(7): 771-787.
[111]          Anglès, M.N. and Dufresne, A., 2001. Plasticized starch/tunicin whiskers nanocomposite materials. 2. Mechanical behavior. Macromolecules, 34(9): 2921-2931.
[112]          Dufresne, A. and Vignon, M.R., 1998. Improvement of starch film performances using cellulose microfibrils. Macromolecules, 31(8): 2693-2696.
[113]          Sanchez-Garcia, M.D., Gimenez, E. and Lagaron, J.M., 2008. Morphology and barrier properties of solvent cast composites of thermoplastic biopolymers and purified cellulose fibers. Carbohydrate Polymers, 71(2): 235-244.
[114]          Svagan, A.J., Hedenqvist, M.S. and Berglund, L., 2009. Reduced water vapour sorption in cellulose nanocomposites with starch matrix. Composites Science and Technology, 69(3-4): 500-506.
[115]          Lagaron, J.M., Catalá, R. and Gavara, R., 2004. Structural characteristics defining high barrier polymeric materials. Materials Science and Technology, 20(1): 1-7.
[116]          Petersson, L., Kvien, I. and Oksman, K., 2007. Structure and thermal properties of poly(lactic acid)/cellulose whiskers nanocomposite materials. Composites Science and Technology, 67(11-12): 2535-2544.
[117]          Anglès, M.N. and Dufresne, A., 2000. Plasticized starch/tunicin whiskers nanocomposites. 1. Structural analysis. Macromolecules, 33(22): 8344-8353.
[118]          Azizi Samir, M.A.S., Alloin, F., Sanchez, J.Y. and Dufresne, A., 2004. Cellulose nanocrystals reinforced poly(oxyethylene). Polymer, 45(12): 4149-4157.
[119]          Mathew, A.P. and Dufresne, A., 2002. Morphological investigation of nanocomposites from sorbitol plasticized starch and tunicin whiskers. Biomacromolecules, 3(3): 609-617.
[120]          TEMPO-mediated surface oxidation of cellulose whiskers. Cellulose, 13(6): 679-687.
[121]          Simonsen, J. and Habibi, Y., 2009. Cellulose nanocrystals in polymer matrices, Wiley, New York.
[122]          Khan, A., Khan, R.A., Salmieri, S., Tien, C.L., Riedl, B., Bouchard, J., Chauve, G., Tan, V., Kamal, M.R. and Lacroix, M., 2012. Mechanical and barrier properties of nanocrystalline cellulose reinforced.